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recherche en groupe et aux joies des découvertes partagées. En plus de son suivi scientifique,
qu’il a ainsi effectué avec soin tout en me laissant beaucoup d’indépendance, Jean a veillé
à mon intégration aux communautés mathématiques et informatiques, et a su encourager
mes vocations de “globe-matheuse”. Pour toutes ces raisons, je tiens à lui exprimer ma plus
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pendant mon premier stage de recherche, effectué sous sa direction à Marseille, au cours de
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de PPS.

Avec Antoine Taveneaux et Timo Jolivet, nous avons effectué simultanément la dernière
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l’attitude globalement positive.
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qui nous étaient dispensés.
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Introduction

Cette thèse porte sur les automates cellulaires probabilistes et sur des mesures spécifiques
sur des espaces symboliques.

Les espaces symboliques sont des ensembles de la forme AE , où A est un ensemble fini
de symboles, et E un ensemble dénombrable, appelé l’ensemble des cellules. Ils apparaissent
dans des contextes variés, et en particulier lors de la modélisation de phénomènes physiques
et biologiques. Par exemple, dans le modèle d’Ising, qui est utilisé en mécanique statis-
tique comme modèle mathématique du ferromagnétisme, un matériau est représenté par
différents moments magnétiques ayant chacun deux états possibles, +1 ou -1, et disposés
selon un graphe (qui a généralement une structure de réseau). En biologie, les espaces sym-
boliques sont utilisés par exemple pour modéliser un ensemble de cellules qui peuvent être
dans différents états (saine/infectée). Au-delà de la modélisation, dans les composants infor-
matiques et électroniques, l’information est encodée par des configurations sur des espaces
symboliques : une image numérique est ainsi constituée d’un ensemble de pixels disposés sur
une grille, à qui sont attribués des couleurs, parmi un ensemble fini de couleurs possibles.

Nous nous intéressons à des mesures spécifiques sur des espaces symboliques. Par spécifi-
que, nous entendons des mesures qui présentent des caractéristiques originales, par opposition
à génériques. Les spécificités des mesures que nous considérons sont doubles.

D’une part, ces mesures ont des propriétés intrinsèques qui les rendent spéciales : elles
ont une structure combinatoire particulière, mettant en jeu la topologie de l’ensemble des
cellules sur lequel elles sont définies. Les mesures markoviennes auront en particulier un rôle
fondamental.

D’autre part, ces mesures correspondent à des équilibres particuliers de processus stochas-
tiques, marches aléatoires ou automates cellulaires probabilistes (ACP).

Un ACP est une châıne de Markov sur un espace symbolique. Le temps est discret, et
toutes les cellules évoluent de manière synchrone : le nouvel état de chaque cellule est choisi
de manière aléatoire, indépendamment des autres cellules, selon une distribution déterminée
par les états d’un nombre fini de cellules situées dans le voisinage. Les ACP sont de bons
candidats pour modeliser les systèmes complexes intervenant dans des processus physiques
ou biologiques, en raison du contraste entre la simplicité de leur définition et la complexité
des comportements qu’ils engendrent. Ils sont utilisés pour explorer les modèles de calcul
robustes aux erreurs. Enfin, ils interviennent dans différents contextes en probabilité et en
combinatoire.

Considérons le cas particulier de l’ensemble des cellules E = Z, l’alphabet A = {0, 1},
et le voisinage constitué de la cellule elle-même et de sa voisine de droite (ou de manière
équivalente, de la voisine de gauche et de la cellule elle-même). Alors, un ACP est entièrement
déterminé par les quatre paramètres (θ00, θ01, θ10, θ11), où θij ∈ [0, 1] est la probabilité qu’une
cellule soit mise à jour par un 1 si son voisinage est dans l’état ij. Considérons par exemple
l’ACP défini par les quatre paramètres (p, 0, 0, 0) pour un certain p ∈ [0, 1], voir Figure 1.

11



12 INTRODUCTION

Cet ACP peut être décrit de la manière suivante : si le voisinage d’une cellule est dans l’état
00, alors, avec probabilité p, la cellule est actualisée par un 1, et avec probabilité 1 − p, la
cellule est actualisée par un 0. Dans les autres cas, la cellule est actualisée par un 0 (avec
probabilité 1). Pour p = 0 et p = 1, il n’y a plus d’aléa : on obtient un automate cellulaire
déterministe.

Les trajectoires d’un ACP sont représentées par des diagrammes espace-temps, qui vivent
eux-mêmes sur des espaces symboliques, avec une dimension supplémentaire correspondant
au temps. Sur la Figure 1, les cellules contenant un 0, resp. un 1, sont représentées en blanc,
resp. en bleu. La ligne la plus basse est la condition initiale, choisie ici aléatoirement, et les
lignes suivantes, de bas en haut, correspondent aux mises à jour successives des cellules.

Le comportement à l’équilibre d’un ACP est étudié par l’intermédiaire des mesures invari-
antes de la châıne de Markov sur l’espace symbolique sur lequel il est défini. De nombreuses
questions se posent. Un ACP est ergodique s’il a une unique mesure invariante, qui est at-
tractive. Le problème de l’ergodicité des ACP est indécidable : il n’existe pas d’algorithme
capable de dire, lorsqu’on lui fournit en argument les paramètres de l’ACP, s’il est ergodique
ou non. Et on ne connâıt pas d’outil général pour décrire les mesures invariantes d’un ACP.

Dans ce contexte, le problème des taux positifs est un véritable défi. On dit qu’un ACP a
des taux strictement positifs si pour n’importe quelle valeur de son voisinage, une cellule peut
être mise à jour par n’importe quel symbole avec une probabilité positive. En dimension deux,
il existe des exemples simples d’ACP à taux strictement positifs qui ne sont pas ergodiques,
mais pour les ACP unidimensionnels, le seul exemple connu a été proposé en 2001 par Gács
(après une première publicaion en 1986), et il est très complexe. En dimension un, si on se
limite aux ACP ayant un voisinage de taille 2, et définis sur un ensemble de symboles de
taille 2, on ne sait pas si tous les ACP à taux strictement positifs (c’est-à-dire, les ACP tels
que θ00, θ01, θ10, θ11 ∈]0, 1[) sont ergodiques.

Des outils issus de la mécanique statistique ont été développés pour étudier les ACP à
taux strictement positifs. Dans ce cas, la recherche de mesures invariantes est équivalente à
un problème de mécanique statistique à l’équilibre. Dans nos travaux, nous nous intéressons
aussi aux ACP ayant des composantes déterministes. Certains outils de mécanique statistique
peuvent être adaptés, mais l’analyse de ces ACP nécessite un soin tout particulier.

Lorsqu’il n’est pas possible d’obtenir des résultats exacts, il est naturel de se tourner
vers la simulation. Simuler des ACP est un véritable défi, coûteux à la fois en temps et en
espace. De plus, quand le nombre de cellules est infini, il n’est pas possible de manipuler
des configurations complètes, celles-ci peuvent seulement être décrites au moyen de certaines
quantités observables. Le point crucial est alors de savoir si l’on peut donner des garanties
sur les résultats obtenus par simulation. En adaptant la méthode de couplage arrière de
Propp et Wilson, nous proposons un algorithme permettant d’échantillonner parfaitement la
mesure invariante d’un ACP ergodique, sous certaines conditions. L’algorithme est aléatoire
et retourne une configuration (ou une portion de configuration) distribuée selon la mesure
invariante, de telle sorte qu’en répétant la procédure, il est possible d’estimer la mesure
invariante avec une précision arbitraire.

Dans des cas très particuliers, il est cependant possible de prévoir de manière théorique
le comportement asymptotique d’un ACP. Par exemple, on sait caractériser les ACP ayant
une mesure invariante de forme produit de Bernoulli. Nous montrons que dans ce cas, les
diagrammes espace-temps définissent des mesures ayant de très faibles dépendances, qui
partagent des propriétés particulières.

Le cas des AC déterministes ayant des mesures de Bernoulli invariantes est également
intéressant. Puisque pour les AC déterministes, l’ergodicité est équivalente à la nilpotence,
il est alors plus pertinent d’assouplir à la fois l’unicité de la mesure invariante et la propriété
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0 (avec probabilité 1)

Règle locale de l’ACP.

(a) p = 0.25 (b) p = 0.5

(c) p = 0.75 (d) p = 1

Diagrammes espace-temps pour différentes valeurs du paramètre p
(simulations effectuées avec le logiciel FiatLux).

Figure 1: Exemple d’ACP sur l’ensemble de cellules E = Z et l’alphabet A = {0, 1}.
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de convergence qui apparaissent dans la définition de l’ergodicité, en introduisant les notions
de rigidité et de randomisation. Un AC est rigide s’il a une unique mesure invariante qui
n’est pas dégénérée (dans un sens à préciser), cette mesure étant la mesure produit uniforme.
La randomisation correspond à la convergence vers la mesure uniforme à partir d’une grande
classe de mesures initiales (qui doit aussi être précisée).

Le problème de la classification de la densité consiste à concevoir un ACP ayant un
comportement donné. Précisément, les symboles sont binaires, et l’ACP doit converger vers
la configuration contenant uniquement l’élément majoritaire, à partir de n’importe quelle
mesure de Bernoulli de paramètre différent de 1/2.

Au-delà des ACP, des mesures particulièrement intéressantes sur des espaces symboliques
surgissent lorsqu’on étudie le comportement asymptotique d’autres dynamiques à temps dis-
cret. Nous introduisons la notion de marches aléatoires sur des produits libres de groupes.
La position du marcheur peut être représentée par un mot écrit sous forme normale, et la
direction prise par le marcheur dans sa fuite vers l’infini est décrite par une mesure sur
les mots infinis. Cette mesure, connue sous le nom de mesure harmonique, a une propriété
markovienne particulière : elle est Markov-multiplicative. Les mots écrits sous forme normale
constituent un exemple de sous-décalage de type fini (désignés aussi sous le nom de sous-shifts
de type fini, ou SFT). Un SFT est l’ensemble des configurations sur un espace symbolique qui
ne contiennent pas certains motifs finis. La notion de mesure Markov-multiplicative prend
toute son importance lorsqu’on étudie les mesures d’entropie maximale de SFT. Ces mesures,
qui sont en un sens les mesures les plus uniformes sur les configurations autorisées, peuvent
aussi être vues commes des états d’équilibres particuliers d’ACP.

Nous verrons que l’ACP de la Figure 1, qui a une mesure markovienne invariante, in-
tervient dans l’énumération des animaux dirigés, et est aussi étroitement relié au SFT de
Fibonacci, ainsi qu’au modèle de sphères dures utilisé en mécanique statistique. Voilà une il-
lustration des nombreuses connections, parfois inattendues, que les ACP permettent d’établir
entre la combinatoire, la mécanique statistique, et la dynamique symbolique. Par ailleurs,
tandis que l’ergodicité de cet ACP est facile à prouver pour de petites valeurs du paramètre
p, en utilisant un couplage avec un modèle de percolation, la question de l’ergodicité est un
problème non résolu pour p proche de 1.

Dans ce contexte, cette thèse commence par une approche générale des ACP, avec un
aperçu de différents domaines dans lesquels ils interviennent. Nous présentons la question de
l’ergodicité et proposons un algorithme de simulation parfaite pour échantillonner l’unique
mesure invariante d’un ACP ergodique.

Nous étudions ensuite des familles spécifiques d’ACP, comme les ACP ayant des mesures
de Bernoulli ou des mesures markoviennes invariantes. Nous explorons également le problème
de classification de la densité.

Dans la troisième partie, nous nous éloignons un peu des ACP pour nous intéresser à
des marches aléatoires sur des produits libres. Mais les ACP jouent à nouveau un rôle
fondamental lors de l’analyse des SFT et de leurs mesures d’entropie maximale, qui conclut
cette thèse.

Contributions principales

En utilisant la terminologie des châınes de Markov, un ACP est ergodique s’il a une unique
mesure invariante qui est attractive. Dans le cas des AC déterministes, nous prouvons que
l’ergodicité est équivalente à la nilpotence (Chap. 3). En corollaire, on obtient que l’ergodicité
d’un AC unidimensionnel est indécidable. Cela répond à un problème ouvert proposé par
Toom en 2001.
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Alors que la mesure invariante d’un AC ergodique est triviale, la mesure invariante
d’un ACP ergodique peut être très complexe. Nous proposons un algorithme permettant
d’échantillonner parfaitement cette mesure dans certains cas (Chap. 3). Il repose sur l’intro-
duction d’un ACP enveloppe, contenant un caractère de remplacement indiquant les états qui
ne sont pas encore déterminés. Ce nouvel ACP s’avère être un outil conceptuel et pratique
très utile.

Nous présentons une analyse détaillée de l’ACP majorité-flip, ainsi que des résultats
expérimentaux suggérant une possible transition de phase pour une certaine valeur du para-
mètre.

Nous présentons une manière alternative de caractériser les ACP élémentaires ayant une
mesure de Bernoulli invariante et étudions en détail les propriétés particulières de leurs
diagrammes espace-temps (Chap. 4). Nous montrons que les états le long de n’importe
quelle ligne droite, à l’exception d’une direction, sont distribués selon la même distribution
de Bernoulli, et que l’ACP apparâıt dans une seconde direction. À notre connaissance, c’est la
première fois que de telles propriétés spatiales sont mises en évidence. La classe d’ACP pour
lesquelles elles sont satisfaites apparâıt comme l’analogue probabiliste des AC permutatifs
(Chap. 4 et 5).

Nous explorons les AC déterministes ayant plusieurs mesures de Bernoulli invariantes,
ainsi que les AC rigides, pour lesquels la distribution uniforme est essentiellement l’unique
mesure invariante (Chap. 5). Nous étendons aux AC qui sont la composition d’une fonction
affine et d’une permutation, un théorème de 2003 de Host, Maass, et Mart́ınez portant sur
les AC affines.

Nous introduisons le problème de classification de la densité sur des réseaux infinis et des
arbres (Chap. 6). En particulier, nous prouvons en utilisant un argument de percolation que
l’AC de Toom classifie la densité sur Z2. Des candidats sont également proposés dans le cas
unidimensionnel.

Nous nous intéressons ensuite aux marches aléatoires sur des produits libres de groupes
(Chap. 7). Nous présentons un cadre combinatoire permettant de décrire la mesure har-
monique, qui fournit la direction prise par le marcheur dans sa fuite vers l’infini. Nous
mettons également en évidence le fait que les mesures d’entropie maximale de SFT sur Z ont
cette même propriété d’être Markov-multiplicatives (Chap. 8). Nous étendons cette notion
aux SFT sur des arbres infinis et établissons un lien avec la notion de f -invariant, introduite
par Bowen in 2010. Nous donnons aussi plusieurs manières d’engendrer la mesure d’entropie
maximale d’un SFT, et prouvons que c’est la mesure invariante d’un ACP bien choisi.

Structure et contenu de la thèse

Nous présentons ci-dessous plus en détail le contenu des différents chapitres. Les dépendances
entre eux sont représentées sur le diagramme suivant.

1

2 3 4 6 7

5 8

Partie I

Partie II Partie III

Comme indiqué sur le diagramme, les différents chapitres sont largement indépendants.
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Dans la Section 5.1.3, nous analysons la spécialisation des conditions du Théorème 4.3
aux AC déterministes. Mais le reste du Chapitre 5 est indépendant du Chapitre 4.

Le Chapitre 8 est relié au Chapitre 7 à travers la notion de mesure Markov-multiplicative
(Définition 7.1).

Chapitre 1. Cadre mathématique. Nous présentons les principales définitions et no-
tations qui sont utilisées tout au long de cette thèse. Nous introduisons d’abord les es-
paces symboliques et la dynamique de l’application de décalage (shift) sur les configurations.
Nous définissons également les mesures de Bernoulli et les mesures markoviennes sur des
espaces symboliques, qui sont des objets centraux de cette thèse. Notre attention se porte
ensuite sur les Automates Cellulaires Probabilistes (ACP). Après avoir défini les ACP et leurs
mesures invariantes, et introduit la notion d’ergodicité, nous présentons deux spécialisations
diamétralement opposées : les ACP à taux strictement positifs (ce sont les ACP n’ayant
aucune composante déterministe), et les automates cellulaires déterministes, connus simple-
ment sous le nom d’automates cellulaires. Les diagrammes espace-temps représentent des
trajectoires d’ACP. On dit qu’ils sont stationnaires si la trajectoire a pour point de départ
une configuration initiale distribuée selon une mesure invariante de l’ACP. Les diagrammes
espace-temps d’ACP à taux strictement positifs sont des champs markoviens, tandis que les
diagrammes espace-temps d’AC déterministes sont des sous-décalages de type fini. Pour finir,
nous présentons des outils issus de la mécanique statistique permettant d’étudier les mesures
invariantes d’ACP.

Partie I
Une approche générale des automates cellulaires probabilistes

et de leurs mesures invariantes

Cette partie introduit des outils généraux pour étudier les mesures invariantes d’ACP, et
explorer leur ergodicité. La présentation est illustrée par différents exemples.

Chapitre 2. Différents points de vue sur les ACP. Nous commençons par com-
menter notre définition des ACP et nous la comparons avec une définition alternative, pour
laquelle l’hypothèse d’indépendance des mises à jour est légèrement assouplie. Cela nous
conduit à introduire le modèle du TASEP, qui est étroitement relié à un système de files
d’attente. Nous montrons également un autre lien entre les ACP et la combinatoire, qui
concerne l’énumération des animaux dirigés. Puis, nous présentons deux spécialisations des
ACP qui fournissent des exemples particulièrement intéressants. Toutes deux consistent à
considérer un AC déterministe et à “perturber” sa règle locale, soit en effectuant des erreurs
aléatoires, soit en introduisant de l’asynchronisme dans l’évolution. En utilisant une approche
de mécanique statistique, nous donnons un exemple classique d’ACP de dimension deux à
taux strictement positifs qui n’est pas ergodique. La dernière partie illustre avec un modèle
de formation d’essaims que les ACP peuvent être utilisés en sciences de la vie comme un
outil de modélisation, et que les modèles impliqués soulèvent aussi des questions théoriques
passionnantes.

Ce chapitre est essentiellement bibliographique. Le contenu est cependant présenté selon
une perspective personnelle, et la dernière partie s’est enrichie de discussions avec Nazim
Fatès et Pierre-Yves Louis.

Chapitre 3. Ergodicité et simulation parfaite. Nous revenons à la notion d’ergodicité.
Pour les AC déterministes, nous démontrons que l’ergodicité est équivalente à la nilpotence.
Cela fournit une preuve de l’indécidabilité de l’ergodicité pour les AC déterministes, ainsi
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qu’une nouvelle preuve de l’indécidabilité de l’ergodicité pour les ACP. Même dans le cas
ergodique, on ne dispose pas d’outil général pour décrire la mesure invariante d’un ACP. Et les
simulations doivent être menées avec précaution. En effet, lorsqu’on étudie le comportement
à l’équilibre d’un ACP, il y a deux sortes d’infini à prendre en compte : le nombre infini de
cellules, et le temps infini, qui correspond au comportement asymptotique de l’ACP. Dans ce
contexte, nous avons développé une procédure de simulation parfaite, qui permet, étant donné
un ACP ergodique, d’échantilloner son unique mesure invariante (sous certaines conditions).
Cette procédure est basée sur une implémentation de l’algorithme de “couplage arrière”, en
utilisant un processus d’encadrement qui est lui-même un ACP, et que nous appelons l’ACP
enveloppe. L’ACP enveloppe est non seulement utile en tant qu’outil pratique pour simuler
la mesure invariante d’un ACP ergodique, mais s’avère également être un outil théorique
pertinent. Nous illustrons l’intérêt de notre algorithme de simulation parfaite en l’utilisant
sur une famille d’ACP à un paramètre, appelé ACP majorité-flip, qui semble présenter une
transition de phase à partir d’une certaine valeur critique du paramètre. Nous montrons que
cet ACP est relié à la fois à un modèle de percolation et à une marche aléatoire doublement
branchante.

Ce chapitre repose sur un travail en collaboration avec Ana Bušić et Jean Mairesse, qui
a donné lieu à une publication dans les actes de la conférence STACS 2011 [BMM11] et à un
article plus long accepté pour publication dans le journal Advances in Applied Probability.

Partie II
Randomisation, conservation, classification

Cette partie est consacrée à l’étude de différents comportements spécifiques d’ACP. Le
point commun de ces trois chapitres est de traiter un problème inverse : nous considérons
un certain comportement spécifique, et essayons de trouver un ACP, ou bien l’ensemble des
ACP, ayant ce comportement.

Chapitre 4. ACP ayant des mesures de Bernoulli ou des mesures markoviennes
invariantes et champs aléatoires avec directions i.i.d. Nous étudions les ACP ayant
des mesures produit de Bernoulli invariantes. Lorsque l’alphabet et le voisinage sont tous
deux de taille 2, on connâıt la condition nécessaire et suffisante sur les valeurs des quatre
paramètres définissant l’ACP, sous laquelle l’ACP possède une mesure produit de Bernoulli
invariante. Nous présentons une preuve nouvelle et simple de cette caractérisation. Nous
explorons ensuite les diagrammes espace-temps stationnaires de tels ACP. Ils peuvent être
représentés sur un réseau triangulaire, et ils définissent des champs aléatoires non trivi-
aux ayant de très faibles corrélations. En particulier, des lignes de différentes directions
du diagramme espace-temps sont constituées de variables aléatoires i.i.d. Les outils utilisés
pour caractériser les ACP ayant des mesures de Bernoulli invariantes permettent également
d’étudier les ACP ayant des mesures markoviennes invariantes. Certains de ces ACP inter-
viennent dans l’énumération des animaux dirigés et présentent donc un intérêt particulier.
Finalement, nous étendons nos résultats à des alphabets et à des voisinages généraux, et
donnons des conditions suffisantes sur les paramètres d’un ACP pour qu’il ait une mesure de
Bernoulli invariante.

Ce chapitre repose sur un travail en collaboration avec Jean Mairesse, accepté pour pub-
lication aux Annales de l’Institut Henri Poincaré. Probabilités et statistiques.

Chapitre 5. Randomisation versus conservation pour les AC unidimensionnels.
Nous nous concentrons sur les AC déterministes. Un résultat bien connu est que la mesure
uniforme est invariante si et seulement si l’AC est surjectif. Plus généralement, les conditions
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sous lesquelles un AC déterministe a une mesure de Bernoulli invariante peuvent être écrites
sous la forme d’une loi de conservation. En conséquence, les AC pour lesquels toutes les
mesures de Bernoulli sont invariantes sont exactement les AC surjectifs et conservatifs, ce qui
s’avère très restrictif. À l’opposé, les AC permutatifs apparaissent comme de bons candidats
pour la randomisation, c’est-à-dire la convergence (au moins en moyenne de Cesáro) vers la
mesure uniforme depuis une grande classe de mesures initiales. Nous introduisons une classe
d’AC permutatifs dont la fonction de transition est définie comme la permutation d’une
règle affine et prouvons qu’ils sont rigides, au sens où leur seule mesure invariante d’entropie
positive est la mesure uniforme.

Ce travail a été initié au cours d’un séjour de recherche avec Alejandro Maass au Center
for Mathematical Modeling (Universidad de Chile), donnant aussi l’occasion de travailler avec
Alexis Ballier. Il a été poursuivi en France avec Benjamin Hellouin de Menibus et Mathieu
Sablik.

Chapitre 6. Classification de la densité. Nous explorons le problème de la classification
de la densité sur des réseaux infinis et des arbres. Ce problème a d’abord été introduit sur des
anneaux finis. Il consiste alors à concevoir un AC (ou un ACP) capable de décider (au moins
avec une grande probabilité) si une configuration initiale sur l’alphabet binaire contient plus
de 0 ou de 1, en convergeant vers la configuration contenant uniquement l’élément majoritaire.
Sur un réseau infini, nous étendons ce problème en demandant à ce que l’AC(P) converge
vers la configuration contenant uniquement des 0 à partir d’une mesure produit de Bernoulli
de paramètre strictement inférieur à 1/2, et vers la configuration contenant uniquement des
1 à partir d’une mesure de Bernoulli de paramètre strictement supérieur à 1/2. Sur Z2, nous
démontrons que l’AC de Toom classifie la densité. Sur Z, le problème demeure ouvert, et
apparâıt comme un véritable défi. Nous proposons plusieurs candidats, pour lesquels des
résultats expérimentaux suggèrent qu’ils pourraient classifier la densité.

Ce chapitre repose sur un travail en collaboration avec Ana Bušić, Nazim Fatès et
Jean Mairesse, qui a donné lieu à une publication dans les actes de la conférence LATIN
2012 [BFMM12] et à un article plus long publié à l’Electronic Journal of Probability [BFMM13].

Partie III
Marches aléatoires et mesures d’entropie maximale

Dans cette partie, nous travaillons sur des mesures spécifiques sur des espaces symbol-
iques, possédant une propriété markovienne. En particulier, les mesures Markov-multiplica-
tives jouent un rôle fondamental. Une interprétation de ces mesures en termes d’ACP est
présentée à la fin du dernier chapitre.

Chapitre 7. Marches aléatoires et mesures Markov-multiplicatives. Nous étudions
les marches aléatoires sur les groupes de type produits libres. Ce sont des marches aléatoires
sur des graphes réguliers particuliers, à savoir les graphes de Cayley de ces groupes. Elles
peuvent également être interprétées comme des empilements aléatoires de pièces. D’un point
de vue symbolique, la marche correspond à l’écriture successive de lettres d’un mot sur
l’alphabet constitué par les éléments des différents groupes intervenant dans le produit libre.
Sous des hypothèses peu restrictives, la marche est transiente, et le mot converge vers un
mot infini de forme normale, représentant la direction prise par le marcheur dans sa fuite
vers l’infini. Nous étudions la distribution de ce mot infini, appelée la mesure harmonique de
la marche aléatoire. Les mesures harmoniques ont la propriété d’être Markov-multiplicative,
ce qui en fait en un sens les mesures les plus indépendantes parmi les mesures sur les mots
de forme normale. Nous présentons un cadre général permettant d’obtenir une description
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combinatoire de la mesure harmonique, et illustrons notre méthode sur l’exemple du produit
libre Z2∗Z, pour lequel nous calculons la valeur de la vitesse de fuite, qui représente la vitesse
à laquelle le marcheur s’éloigne vers l’infini.

Ce chapitre repose sur un travail en commun avec Jean Mairesse.

Chapitre 8. Mesures d’entropie maximale de sous-décalages de type fini. Nous
considérons d’abord des sous-décalages de type fini (SFT) sur Z. Un résultat bien connu
est que la mesure d’entropie maximale d’un SFT est une mesure markovienne, qui peut être
décrite via les propriétés de la matrice définissant le SFT (que l’on suppose irréductible).
Cette mesure markovienne, désignée sous le nom de mesure de Parry du SFT, a la propriété
d’être Markov-multiplicative. Nous présentons des constructions alternatives de cette mesure
au moyen de variables aléatoires i.i.d. et d’ACP. Nous considérons ensuite des SFT définis
sur des arbres réguliers infinis, et construisons des mesures markoviennes ayant la propriété
d’être uniforme sur tous les motifs autorisés, conditionnellement à n’importe quelle valeur
du voisinage. Ces mesures, que nous appelons des mesures d-Parry, sont des généralisations
naturelles de la mesure de Parry. Nous établissons un lien entre les mesures d-Parry et
le f -invariant de Bowen, qui généralise la notion d’entropie aux actions de groupes libres.
Précisément, nous prouvons que les mesures maximisant le f -invariant sont les mesures d-
Parry. Finalement, nous montrons que les mesures d’entropie maximale sont des mesures
réversibles d’ACP.

Le travail sur les mesures de Parry sur Z est issu de discussions avec Jean Mairesse.
L’exploration des SFT définis sur les arbres est un travail en cours avec Vincent Delecroix.
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Introduction

This thesis deals with probabilistic cellular automata and specific measures on symbolic
spaces.

Symbolic spaces are sets of the form AE , where A is a finite set of symbols, and E a
countable set, called the set of cells. They appear in various contexts, and in particular when
modelling physical and biological phenomena. For example, in the Ising model, which is a
mathematical model of ferromagnetism used in statistical mechanics, a material is represented
by different spins arranged in a graph (usually, a lattice), each of them being in one of two
states, +1 or −1. In biology, symbolic spaces can for example be used to model a set of cells
that can be in different states (e.g. infected/healthy). Beyond modelling, configurations on
symbolic spaces are the way the information is encoded in computing and electronic devices:
a digital image consists of a set of pixels arranged in a two-dimensional grid, to which are
allocated colors, among a finite set of possible colors.

We are interested in specific probability measures on symbolic spaces. By specific, we
mean measures that present original characteristics, as opposed to generic. The specificities
of the measures we consider are twofold.

On the one hand, these measures have some intrinsic properties making them special:
they have a particular combinatorial structure, involving the topology of the set of cells on
which they live. In particular, Markov measures will play a fundamental role.

On the other hand, these measures correspond to some particular equilibrium of stochastic
processes, such as random walks or probabilistic cellular automata (PCA).

A PCA is a Markov chain on a symbolic space. Time is discrete, and all the cells evolve
synchronously: for each cell, the new content is randomly chosen, independently of the others,
according to a distribution given by the states in a finite neighbourhood of the cell. Due to
the amazing gap between the simplicity of the definition and the intricacy of the generated
behaviours, PCA are good candidates for modelling complex systems appearing in physical
and biological processes. They are also used to investigate fault-tolerant computational
models. Finally, they appear in different contexts in probability theory and in combinatorics.

Consider the specific case of the set of cells E = Z, the alphabet A = {0, 1}, and the
neighbourhood consisting of the cell itself and its right neighbour (or, the left neighbour and
the cell itself). Then, a PCA is entirely determined by the four parameters (θ00, θ01, θ10, θ11),
where θij ∈ [0, 1] is the probability that a cell is updated to 1 if its neighbourhood is ij.
Consider for example the PCA defined by the parameters (p, 0, 0, 0) for some p ∈ [0, 1], see
Fig. 2. This PCA can be described as follows: if the neighbourhood of a cell is in state 00,
then, with probability p the cell is updated to 1, and with probability 1−p the cell is updated
to 0. Otherwise, the cell is updated to 0 (with probability 1). For p = 0 and p = 1, we obtain
a deterministic cellular automaton.

The trajectories of a PCA are represented by space-time diagrams, living themselves on
a symbolic space, with an additional dimension corresponding to time. In Fig. 2, the cells
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0 with probability 1− p
1 with probability p

0 (with probability 1)

Local rule of the PCA.

(a) p = 0.25 (b) p = 0.5

(c) p = 0.75 (d) p = 1

Space-time diagrams for different values of the parameter p
(simulations made with the software FiatLux).

Figure 2: Example of PCA on the set of cells E = Z and the alphabet A = {0, 1}.
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containing a 0, resp. a 1, are represented in white, resp. blue. The bottom line is the initial
condition, here choosen at random, and the next lines, from bottom to top, are the successive
updates of the cells.

The equilibrium behaviour of a PCA is studied via the invariant measures of the Markov
chain on the symbolic space on which it is defined. Several questions arise. A PCA is ergodic
if it has a unique and attractive invariant measure. The problem of the ergodicity of PCA
is known to be undecidable: there exists no algorithm able to say, when taking in input the
parameters of a PCA, if it is ergodic or not. And no general tool is known to describe the
invariant measures of PCA.

A challenging problem in this area is the positive rates problem. A PCA is said to have
positive rates if for any neighbourhood, the updated content of a cell can be any symbol
with a strictly positive probability. There are simple examples of two-dimensional positive-
rate PCA that are non-ergodic, but for one-dimensional PCA, the only known example was
exhibited in 2001 by Gács (after a first publication in 1986), and it is very complex. If we
restrict ourselves to one-dimensional PCA having a neighbourhood of size 2, and defined on
a set of symbols of size 2, it is unknown if any positive-rate PCA (that is, PCA such that
θ00, θ01, θ10, θ11 ∈ (0, 1)) is ergodic.

Tools coming from statistical mechanics have been developed to study positive-rate PCA.
In this case, the research of invariant measures is shown to be equivalent to an equilibrium
statistical mechanics problem. In our work, we are also interested in PCA having deter-
ministic components. Some tools of statistical mechanics can still be adapted, but the analysis
of such PCA needs to be done individually and very carefully.

When explicit computation is not possible, simulation becomes the alternative. Simulat-
ing PCA is known to be a challenging task, costly both in time and space. Also, configurations
cannot be tracked down one by one when the number of cells is infinite, and may only be
observed through some measured parameters. So the crucial point is whether some guaran-
tees can be given upon the results obtained from simulations. By adapting the coupling from
the past method of Propp and Wilson, we propose a perfect sampling procedure to estimate
the invariant measure of an ergodic PCA, under some suitable conditions. The algorithm
is random and returns a configuration (or a portion of configuration) distributed according
to the invariant measure, so that by applying the procedure repeatedly, we can estimate the
invariant measure with arbitrary precision.

In some very particular cases, it is however possible to foresee theoretically the asymp-
totic behaviour of a PCA. For example, there is a known characterisation of PCA having a
Bernoulli product invariant measure. We show that the stationary space-time diagrams of
such PCA define measures with very weak dependence, sharing some special properties.

The case of deterministic CA having Bernoulli invariant measure turns out to be also
interesting. Since for deterministic CA, ergodicity is equivalent to nilpotency, it is relevant
to relax both the uniqueness of the invariant measure and the convergence property of the
definition of the ergodicity, by introducing the notions of rigidity and randomisation. A
CA is rigid if its only invariant measure that is non-degenerated (in some sense that has
to be specified) is the uniform product measure. The randomisation corresponds to the
convergence to the uniform measure from a large class of initial measures (which also needs
to be specified).

The density classification problem consists in designing a PCA having a certain behaviour.
Precisely, the symbols are binary, and the PCA should converge to the configuration con-
taining only the element in the majority from any Bernoulli product measure of parameter
different from 1/2.

Beyond PCA, measures on symbolic spaces of particular interest arise when studying the
asymptotic behaviour of other discrete time dynamics. We introduce random walks on free
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products of groups. The position of the walker can be represented by a normal form word,
and the direction taken by the walker in its escape to infinity is described by a measure
on infinite words. This measure, known as the harmonic measure, has a particular Markov
property: it is Markov-multiplicative. Normal form words are an example of subshift of finite
type (SFT). An SFT is the set of configurations on a symbolic space that do not contain
some given finite patterns. The notion of Markov-multiplicative measures takes also great
importance when studying measures of maximal entropy of SFT. These measures, that are
in some sense the most uniform measures on admissible configurations, can also be seen as
special equilibrium measures of PCA.

We will see that the PCA of Fig. 2, which has a Markov invariant measure, is involved
in the counting of directed animals, and is also tightly related to the Fibonacci SFT and
the hardcore lattice gas model. This is one illustration of the many unexpected connec-
tions offered by PCA between combinatorics, statistical mechanics, and symbolic dynamics.
Furthermore, whereas ergodicity is easy to prove for small values of the parameter p, by a
coupling with a percolation model, the question of ergodicity appears to be a difficult problem
when p is close to 1.

In that context, this thesis presents first a general approach to PCA, with an insight
into different domains in which they are involved. We address the question of ergodicity and
propose a perfect sampling algorithm to sample the unique invariant measure of an ergodic
PCA.

Second, we study specific families of PCA, such as PCA having Bernoulli and Markov
invariant measures. We also explore the density classification problem.

In the third part of the thesis, we leave PCA for a while to consider random walks on free
product of groups. But PCA will play again a fundamental role when analysing subshifts of
finite type and their measures of maximal entropy.

Main contributions

Using the terminology of Markov chains, a PCA is called ergodic if it has a unique and
attractive invariant measure. In the case of deterministic CA, we prove that ergodicity is
equivalent to nilpotency (Chap. 3). As a corollary, one obtains that it is undecidable if a
given one-dimensional CA is ergodic. This answers an open problem asked by Toom in 2001.

While the invariant measure of an ergodic CA is trivial, the invariant measure of an
ergodic PCA can be very complex. We describe an algorithm to perfectly sample this measure
in certain cases (Chap. 3). It is based on the introduction of an envelope PCA, containing a
wildcard state indicating states that are not yet determined. This new PCA turns out to be
a powerful conceptual and practical tool.

We present an in-depth analysis of the majority-flip PCA as well as experimental results,
suggesting a possible phase transition for some value of the parameter.

We present an alternative way to characterise elementary PCA having Bernoulli invariant
measure and study in detail the peculiar properties of their space-time diagrams (Chap. 4).
The states along any line, with the exception of one direction, are proved to be distributed
according to the same Bernoulli distribution, and the original PCA appears in a second
direction. To our knowledge, it is the first time that such spatial properties are highlighted.
The class of PCA for which they hold appear as the probabilistic counterpart of deterministic
permutative CA (Chap. 4 and 5).

We explore deterministic CA having several Bernoulli measures as well as rigid CA, for
which the uniform distribution is practically the only invariant measure (Chap. 5). We extend
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to CA that are compositions of an affine function and a state permutation a theorem on affine
CA published in 2003 by Host, Maass, and Mart́ınez.

We explore the density classification problem on infinite lattices and trees (Chap. 6). In
particular, it is proved using a percolation argument that the well-known Toom’s CA classifies
the density on Z2. Candidates are also proposed for the one-dimensional case.

We then focus on random walks on free products of groups (Chap. 7). We provide a
combinatorial description of the harmonic measure, giving the direction taken by the walker
in its escape to infinity. We also highlight the fact that measures of maximal entropy of SFT
on Z have this same property of being Markov-multiplicative measures (Chap. 8). We extend
this notion to SFT on infinite trees and exhibit a connection with the notion of f -invariant,
introduced by Bowen in 2010. We also provide different ways to generate the measure of
maximal entropy of a SFT, which is shown to be the invariant measure of a well-suited PCA.

Thesis structure and content

We present below more in detail the content of the different chapters. The dependence
between them is represented by the following diagram.

1

2 3 4 6 7

5 8

Part I

Part II Part III

As illustrated, the different chapters are largely independent.
In Sec. 5.1.3, we analyse the specialisation of the conditions of Th. 4.3 to deterministic

CA. But the rest of Chap. 5 is independent from Chap. 4.
Chap. 8 is related to Chap. 7 through the notion of Markov-multiplicative measure

(Def. 7.1).

Chapter 1. Mathematical framework. We present the main definitions and notations
that will be used all along the thesis. We first introduce symbolic spaces and the dynamics
of the shift on configurations. We also define Bernoulli and Markov measures on symbolic
spaces, that are central objects of the present thesis. The focus is then on probabilistic cellu-
lar automata (PCA). After having defined PCA and their invariant measures, and introduced
the notion of ergodicity, we present two diametrically opposed specialisations: positive-rate
PCA (which are PCA having no deterministic components), and deterministic cellular au-
tomata, known also simply as cellular automata. Space-time diagrams represent trajectories
of PCA. They are called stationary if the trajectory is initiated from an initial configu-
ration distributed according to an invariant measure of the PCA. Space-time diagrams of
positive-rate PCA are Markov random fields, whereas space-time diagrams of deterministic
CA are subshifts of finite type. We also introduce interacting particle systems, that are the
continuous-time analogues of PCA. Finally, we present classical tools coming from statistical
mechanics to study the invariant measures of PCA.



26 INTRODUCTION

Part I
Probabilistic cellular automata and their invariant measures:

a general approach

This part introduces general tools to study the invariant measures of PCA, and to explore
their ergodicity. The presentation is illustrated by different examples.

Chapter 2. Different viewpoints on PCA. We first discuss our definition of PCA, and
compare it with an alternative one, where the assumption of independence of the updates of
different cells is slightly relaxed. This leads us to introduce the TASEP model, which is tightly
related to a queueing system. We also show another link between PCA and combinatorics,
concerning the counting of directed animals. Then, we present two specifications of PCA that
provide examples of particular interest. They both consist in considering a deterministic CA
and “perturbating” the rule, either by doing random errors or by introducing asynchronism
in the evolution. Using the statistical mechanics approach, we also exhibit a two-dimensional
positive-rate PCA that is not ergodic. The last section illustrates with a model of swarming,
that PCA can also be used in life sciences as a modelling tool, and that the models involved
also give rise to exciting theoretical questions.

This chapter is mostly bibliographical. The content is however presented from a personal
perspective, and the last section has benefited from discussions with Nazim Fatès and Pierre-
Yves Louis.

Chapter 3. Ergodicity and perfect sampling. We come back to the notion of ergodic-
ity. For deterministic CA, we prove that ergodicity is equivalent to nilpotency. This provides
a proof of the undecidability of the ergodicity for deterministic CA, as well as a new proof of
the undecidability of the ergodicity for PCA. Even in the ergodic case, there are no general
tools to describe the invariant measure of a PCA. And simulations have to be taken with care,
since when studying the equilibrium behaviour of a PCA, there are two kinds of infinity one
has to take into account: the infinite number of cells, and the infinite time, corresponding to
the asymptotic behaviour of the PCA. In that context, we have developed a perfect sampling
procedure that allows, given an ergodic PCA, to sample its unique invariant measure (under
some conditions). This procedure is based on an implementation of the “coupling from the
past” algorithm, using a bounding process which is itself a PCA, that we call the envelope
PCA. The envelope PCA turns out to be useful not only as a practical tool for sampling the
invariant measure of an ergodic PCA, but also as a theoretical tool. We illustrate the use of
our perfect sampling algorithm with a one-parameter family of PCA called the majority-flip
PCA, that is suspected to present a phase transition from some threshold value of the pa-
rameter. We also show that this PCA is related both with a percolation model and with a
double branching annihilating random walk.

This chapter is based on a joint work with Ana Bušić and Jean Mairesse, that has given
rise to a publication in the proceedings of the conference STACS 2011 [BMM11] and to a
longer article that will be published in the journal of Advances in Applied Probability.

Part II
Randomisation, conservation, classification

This part is devoted to the study of different specific behaviours of PCA. The common
point of the three chapters is that the approach consists in studying an inverse problem: we
consider some specific asymptotic behaviour, and try to find one or all PCA presenting this
behaviour.
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Chapter 4. PCA having Bernoulli or Markov invariant measures and random
fields with i.i.d. directions. We study PCA having Bernoulli product invariant measures.
When both alphabet and neighbourhood have size 2, there is a known necessary and sufficient
condition on the values of the four parameters defining the PCA under which it has a Bernoulli
product invariant measure. We give a new and simple proof of this characterisation. We
then explore the stationary space-time diagrams of such PCA. They can be represented on
a triangular lattice, and they define non-trivial random fields having very weak correlations.
In particuliar, lines in different directions of the space-time diagram are constituted of i.i.d.
random variables. The tools used to characterise PCA having Bernoulli invariant measures
can also be used to study PCA having Markov invariant measures. Some of these PCA are
related to the counting of directed animals and thus present a particular interest. Finally,
we extend our results to general alphabet and neighbourhood, and give sufficient conditions
on the parameters of a PCA for having a Bernoulli invariant measure.

This chapter is based on a joint work with Jean Mairesse, accepted for publication at the
Annales de l’Institut Henri Poincaré. Probabilités et statistiques.

Chapter 5. Randomisation versus conservation in one-dimensional CA. We focus
on deterministic CA. It is well known that the uniform Bernoulli product measure is invariant
if and only if the CA is surjective. More generally, the conditions for a deterministic CA
to have a Bernoulli product measure can be written in terms of a conservation law. Conse-
quently, CA for which all the Bernoulli product measures are invariant are exactly surjective
and state-conserving CA, and it corresponds to very constraint rules. At the opposite, per-
mutative CA appear to be good candidate for randomising, that is, converging (or at least,
converging in Cesáro mean) to the uniform product measure from a large range of initial
measures. We introduce a class of permutative CA whose transition function is defined by
a permutation of an affine rule, and prove that they are rigid in the sense that their unique
invariant measure of positive entropy is the uniform measure.

This work was initiated during a research period with Alejandro Maass at the Center for
Mathematical Modeling (Universidad de Chile), giving also the opportunity to discuss with
Alexis Ballier. It has been carried on in France with Benjamin Hellouin de Menibus and
Mathieu Sablik.

Chapter 6. Density classification on infinite lattices and trees. We explore the
density classification problem on infinite lattices and trees. This problem was initially con-
sidered on finite rings. It then consists in designing a CA (or a PCA) able to decide (at least
with a high probability) if an initial configuration on the binary alphabet contains more 0’s
or 1’s, by converging to the configuration containing only the element in the majority. On an
infinite lattice, we extend this problem by asking the PCA to converge to the configuration
with only 0’s from any Bernoulli product measure of parameter smaller than 1/2, and to the
configuration with only 1’s from a Bernoulli product measure of parameter larger than 1/2.
On Z2, we prove that Toom’s CA classifies the density. On infinite trees, we are also able to
provide examples of CA that classify the density. The problem is open on Z and appears as
a difficult challenge. We propose some candidates, for which numerical results suggest that
they could classify the density.

This chapter is based on a joint work with Ana Bušić, Nazim Fatès and Jean Mairesse,
that has lead to a publication in the proceedings of the conference LATIN 2012 [BFMM12]
and to a longer article published at the Electronic Journal of Probability [BFMM13].
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Part III
Random walks and measures of maximal entropy

In this part, we work on specific measures on symbolic spaces, having a Markov property.
In particular, Markov-multiplicative measures play a fundamental role. An interpretation in
terms of PCA is presented at the end of the last chapter.

Chapter 7. Random walks and Markov-multiplicative measures. We study random
walks on groups of free-product type. They can be thought of as random walks on particular
regular graphs, that are the Cayley graphs of these groups, but also as random heaps of pieces.
From the symbolic viewpoint, the walk can be seen as the successive writings of letters of
a word on the alphabet constituted by the elements of the different groups involved in the
free product. Under very weak conditions, the walk is transient, and the word converges
to an infinite normal form word, representing the direction taken by the walk in its escape
to infinity. We study the distribution of that infinite word, which is the so-called harmonic
measure. Harmonic measures have the property to be Markov-multiplicative. This makes
them in some sense the most independent measures among the measures on normal form
words. We present a general framework allowing to obtain a combinatorial description of the
harmonic measure, and illustrate it in the case of the free product Z2 ∗ Z, for which we also
compute the value of the drift, which represents the speed of escape to infinity of the walk.

This chapter is based on a joint work with Jean Mairesse.

Chapter 8. Measures of maximal entropy of subshifts of finite type. We first
consider subshifts of finite type on Z. It is well known that the measure of maximal entropy
of a SFT is a Markov measure, which can be described through the properties of the matrix
defining the SFT (which we assume to be irreducible). This Markov measure, which we
refer to as the Parry measure of the SFT, happens to be Markov-multiplicative. We present
alternative constructions of that measure with the mean of i.i.d. random variables and
PCA. We then consider subshifts of finite-type defined on infinite regular trees, and design
Markov measures having the property to be uniform on all allowed patterns conditionally
to any fixed value of the neighbourhood. These measures, that we call d-Parry measures,
are natural generalisations of the Parry measure. We relate d-Parry measures with the f -
invariant of Bowen, generalising the notion of entropy to free group actions. Precisely, we
prove that the measures maximising the f -invariant are d-Parry measures. Finally, we present
an interpretation of measures of maximal entropy as reversible measures of PCA.

The work on Parry measures on Z stemmed from discussions with Jean Mairesse. The
exploration of SFT defined on trees is a work in progress with Vincent Delecroix.



Chapter 1

Mathematical background

Cómo se llama una flor que vuela de pájaro en pájaro?
– Pablo Neruda, El Libro De Las Preguntas
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This chapter presents the main concepts and notations that will be used through this
thesis.

1.1 Shift spaces

Let A be a finite set called the alphabet , whose elements are referred to as letters or symbols,
and let E be a countable set of cells. We consider the symbolic space X = AE . An element
(xk)k∈E of X is a configuration.

To go forward, we need some additional structure on the set E. For simplicity, we assume
in this section that E is equal to Zd, for some d ≥ 1, but most of the notions that follow can
be extended to general discrete groups.

For a finite set K ⊂ E, a cylinder of base K is a subset of X having the form

[yK ] = {x ∈ X ; ∀k ∈ K, xk = yk}

for some element y = (yk)k∈K ∈ AK . We denote by C(K) the set of cylinders of base K.
For x ∈ AK and α ∈ A, we denote by |x|α the number of occurrences of the letter α in

x, that is,
|x|α = Card {k ∈ K;xk = α}.

29
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We equip A with the discrete topology. The product topology on X can be described as
the topology generated by cylinders. With this topology, X is a compact metric space. A
distance on X can be given by:

d(x, y) = 2−r, where: r = max{r ∈ N; ∀‖k‖ ≤ r, xk = yk},

where ‖ ·‖ can for example denote the 1-norm ‖k‖1 =
∑d

i=1 |ki|. The distance d on X reflects
the combinatorics of configurations: two configurations are close from each other if they
coincide on a large pattern around the origin.

For n ∈ Zd, the shift σn is the homeomorphism defined by:

σn : X → X
x = (xk)k∈Zd 7→ σn(x) = (xn+k)k∈Zd .

(1.1)

A set X ⊂ X is said shift-invariant if σn(X) = X for any n ∈ Zd. A subshift is a closed
shift-invariant subset X of X . The set X is referred as the full shift.

For any non-empty set F ⊂ Zd, we define the map πF as the projection restricting each
element x ∈ X to the window F , that is:

πF : X → AF
(xk)k∈Zd 7→ (xk)k∈F .

Definition 1.1 (Subshifts of finite type). A subshift X ⊂ X is a subshift of finite type (SFT)
if there exists a finite set F ⊂ Zd and a set of patterns P ⊂ AF such that:

X = {x ∈ X ;∀n ∈ Zd, πF ◦ σn(x) ∈ P}.

The set P is then known as the set of allowed patterns.

1.2 Bernoulli and Markov measures

We still consider a space X = AE , with E = Zd for some d ≥ 1. Let us denote byM(A) the
set of probability measures on the alphabet A, and byM(X ) the set of probability measures
on X for the Borel σ-algebra.

Let p = (pi)i∈A ∈ [0, 1]A be a vector satisfying
∑

i∈A pi = 1. We denote by B(p) the
corresponding probability measure on A, called the Bernoulli measure of parameter p.

The Bernoulli product measure induced by p on X is the measure µp = B⊗Zdp . Thus, for
any cylinder set [y]K , we have

µp([yK ]) =
∏

k∈K
pyk =

∏

i∈A
p
|y|i
i .

The uniform measure on X is the Bernoulli product measure induced by the uniform
Bernoulli measure on A. We will denote it by λ.

Definition 1.2 (Markov random fields). A measure µ ∈M(X ) is a Markov random field if
it satisfies:

µ
(

[aF ]
∣∣∣ [b∂F ] ∩ [cG]

)
= µ

(
[aF ]

∣∣∣ [b∂F ]
)

whenever F and G are finite subsets of Zd, F ∩ G = ∅, and µ([b∂F ] ∩ [cG]) > 0, where ∂F
stands for the boundary of F :

∂F = {k ∈ Zd \ F ; ∃n ∈ F, ‖n− k‖1 = 1}.
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The definition can naturally be extended to other graphs than Zd, as well as to other
definitions of the boundary.

Bernoulli product measures are examples of Markov random fields.
For d = 1, Markov random fields coincide with finite state stationary Markov measures.

A Markov chain is described by a transition matrix Q ∈ [0, 1]A
2
, such that

∀i ∈ A,
∑

j∈A
Qi,j = 1.

An invariant measure of Q is a probability (πi)i∈A ∈ [0, 1]A satisfying:

∀j ∈ A, πj =
∑

i∈A
πiQi,j .

The Markov measure µ induced on AZ is defined on cylinders by:

µ([xm, xm+1, . . . , xn]) = πxm

n−1∏

i=m

Qxi,xi+1 .

On Zd(d ≥ 1), Markov fields are equivalent to Gibbs measures with nearest neighbour
potentials [Spi71].

The terminology used in the next definition is proper to this thesis.

Definition 1.3 (Markov-uniform measure). We say that a Markov random field µ ∈M(X ) is
Markov-uniform if the quantity µ([aF ] | [b∂F ]) does not depend on the cylinder [aF ] of base F
such that µ([aF ]∩ [b∂F ]) > 0. That is, conditionally to any fixed value of the neighbourhood,
the measure µ is uniform on all patterns of positive probability.

1.3 Probabilistic cellular automata (PCA)

In this section, we define and consider probabilistic cellular automata on the set of cells
E = Zd. All the definitions still make sense if one replaces Zd by Zm1 × . . .Zmd , where
Zm = Z/mZ. This corresponds to the restriction of a PCA defined on Z to a finite window of
size m1 × . . .×md, with periodic boundary conditions. The definitions can also be adapted
to more general discrete groups with very slight changes. This extension will be used in
particular in Chap. 6.

1.3.1 Definition

Definition 1.4 (Probabilistic cellular automata). Let N ⊂ Zd be a finite set, called the
neighbourhood . A (local) transition function of neighbourhood N is a function

f : AN →M(A).

The probabilistic cellular automaton (PCA) of transition function f is the map

F : M(X ) → M(X )
µ 7→ µF

defined on cylinders by:

µF ([yK ]) =
∑

[xK+N ]∈C(K+N )

µ([xK+N ])
∏

k∈K
f((xk+v)v∈N )(yk).



32 CHAPTER 1. MATHEMATICAL BACKGROUND

A PCA is a Markov chain on the state space X . Consider a realisation (Xn)n∈N of that
Markov chain. If X0 is distributed according to µ ∈M(X ), then Xn is distributed according
to µFn.

Let us assume that the initial measure is concentrated on some configuration x ∈ X .
Then by application of F , the content of the cell k ∈ Zd is updated to the letter α ∈ A
with probability f((xk+v)v∈N )(α), choices being independent for different cells. The real
number f((xk+v)v∈N )(α) ∈ [0, 1] is thus to be thought as the conditional probability, that,
after application of F , the k-th cell will be in the state α if, before its application, the
neighbourhood of k was in the state (xk+v)v∈N .

In other words, if δx denotes the Dirac measure concentrated on the configuration x, its
image δxF by the PCA F is a product measure. In particular, if x is the monochromatic
configuration αZ

d
, which means that xk = α for all k ∈ Zd, then the measure δxF is the

Bernoulli measure µp induced by the probability p = f(αN ).

Definition 1.5. A measure µ ∈ M(X ) is an invariant measure of the PCA F if µF = F .
A PCA F is ergodic if it has exactly one invariant measure π ∈ M(X ) which is attractive,
that is, for any measure µ ∈ M(X ), the sequence µFn converges weakly to π, i.e. for any
cylinder [xK ],

lim
n→+∞

µFn([xK ]) = π([xK ]).

An important point is that any probabilistic cellular automaton has at least one invariant
measure. The proof of that proposition is based on the observation that the set M(X ) of
measures on X is compact for the weak topology [DKT90]. Since the application µ 7→ µF
is continuous for this topology, Schauder-Tychonoff fixed point theorem gives the result. An
other way to conclude the proof is to observe that for every measure µ ∈M(X ), the sequence
of Cesàro sums

µ+ µF + . . .+ µFn−1

n

has some accumulation point, which is an invariant measure of the PCA.
One can even prove a stronger statement: any PCA has at least one invariant measure

which is shift-invariant.
The existence of several invariant measures obviously implies the non-ergodicity of the

system, but the reverse is not true, as it will be evocated in Chap. 3.

1.3.2 Positive-rate PCA and deterministic cellular automata

PCA having no deterministic components are said to be positive-rate PCA.

Definition 1.6 (Positive-rate PCA). A PCA has positive rates, if

∀(xv)v∈N ∈ AN ,∀α ∈ A, f((xv)v∈N )(α) > 0.

At the opposite, classical cellular automata are another specialisation of PCA, for which
the transition function is deterministic.

Definition 1.7 (Deterministic cellular automata). A PCA is a deterministic cellular au-
tomaton (CA) if for each sequence (xv)v∈N ∈ AN , the measure f((xv)v∈N ) is concentrated
on a single letter of the alphabet.

The transition function can thus be seen as a function f : AN 7→ A, and the CA as a
deterministic function F : X → X .

Deterministic cellular automata have been widely studied, in particular on the set of cells
E = Z. They are classical and relevant mathematical objects: by Curtis-Hedlund-Lyndon
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theorem [Hed69], deterministic cellular automata are precisely the mappings from AZd to

AZd which are continuous (with respect to the product topology) and commute with the
shift.

1.3.3 Space-time diagrams and update functions

As an extension of the usual notion of space-time diagrams in the deterministic context, we
introduce the following definition.

Definition 1.8 (Space-time diagram). A space-time diagram is a trajectory (Xn)n∈N =
(Xn

k )k∈Zd,n∈N of a PCA, from the (random) initial configuration X0. The variable Xn
k of

the random field (Xn)n∈N = (Xn
k )k∈Z,n∈N is indexed by its space-coordinate k, and its time-

coordinate n.

Consider a PCA F on the set of cells Zd and let µ be an invariant measure of F . It
is possible to start the evolution of the PCA F from an initial configuration distributed
according to µ at instant −N , instead of 0. By invariance of µ, the laws of the space-time
diagrams obtained are consistent. It follows from Kolmogorov extension theorem that there
exists a uniquely defined law inM(AZd×Z) whose restrictions are the laws of these space-time
diagrams. Roughly, it is the law of a space-time diagram starting at time −∞.

We will see in Sec. 1.4.2 that if a PCA has positive rates, then for any of its invariant
measures, the stationary space-time diagram obtained defines a Markov random field on
AZd+1

.

For a deterministic CA, any initial configuration defines a unique space-time diagram.
The set of bi-infinite space-time diagrams of a given deterministic CA defines a subshift of
finite type on AZd+1

. Let F = {(v, 0) ; v ∈ N} ∪ {(0, 1)}. The set of allowed patterns is:
P = {xF ∈ AF ; x1

0 = f((x0
v)v∈N )}.

Let τ be the uniform measure on [0, 1]. We define the product measure U = τ⊗Z
d

on

[0, 1]Z
d
. Space-time diagrams of PCA can be generated using an update function that takes

in input a configuration and a sample in [0, 1]Z
d
, and returns a new configuration according

to the right probability.

Definition 1.9 (Update function). An update function of the PCA F is a deterministic

function φ : AZd × [0, 1]Z
d → AZd , satisfying for each x ∈ AZd , and each cylinder yK ,

U({r ∈ [0, 1]Z
d
;φ(x, r) ∈ [yK ]}) =

∏

k∈K
f((xk+v)v∈N )(yk).

In practice, it is always possible to define an update function φ for which the value
of φ(x, r)k only depends on (xk+v)v∈N and on rk. For example, if the alphabet is A =
{α1, . . . , αn}, one can set

φ(x, r)k =





α1 if 0 ≤ rk < f((xk+v)v∈N )(α1)
α2 if f((xk+v)v∈N )(α1) ≤ rk < f((xk+v)v∈N )({α1, α2})
...
αn if f((xk+v)v∈N )({α1, α2, . . . , αn−1}) ≤ rk ≤ 1.

(1.2)

For an initial configurationX0 ∈ AZd , and a sequence of independent samples (rt)t∈N, r
t ∈

[0, 1]Z
d

distributed according to U , we can then define recursively a space-time diagram by

Xt+1 = φ(Xt, rt).

In Chap. 2, we will give examples of PCA as well as some representations of space-time
diagrams.
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1.3.4 Interacting particle systems

The analogue of PCA in continuous time are (finite-range) interacting particle systems
(IPS) [Lig05]. IPS are also characterised by a finite neighbourhood N ⊂ Zd, and a transition
function f : AN →M(A). We attach random and independent clocks to the cells of Zd. For
a given cell, the instants of R+ at which the clock rings form a Poisson process of parameter
1. Let xt be the configuration at time t ≥ 0 of the process. If the clock at cell k rings at in-
stant t, the state of the cell k is updated according to the probability measure f((xtk+v)v∈N ).
This defines a transition semigroup F = (F t)t∈R+ , with F t :M(X ) →M(X ). If the initial
measure is µ, the distribution of the process at time t is given by µF t. A measure µ is an
invariant measure if µF t = µ for all t ∈ R+.

Observe that PCA are discrete-time Markov chains, while IPS are continuous-time Markov
processes. In a PCA, all cells are updated at each time step, in a “synchronous” way. On
the other hand, for an IPS, the updating is “fully asynchronous”. Indeed, the probability of
having two clocks ringing at the same instant is 0.

1.4 Statistical mechanics of PCA

The connection with equilibrium statistical mechanics is essential to understand PCA. Here,
the results are presented without proofs. In addition to the references given through this
section, we refer to the article of Lebowitz, Maes and Speer [LMS90]. A comprehensive
survey in french can also be found in the thesis of Louis [Lou02].

1.4.1 Gibbs measures

We first introduce some background of statistical mechanics. Let Γ be the set of vertices of
a non-oriented graph, locally finite (in Sec. 1.4.2, we will consider a graph of set of vertices
Zd+1, but in Sec. 1.4.3, we will also introduce a graph of vertices indexed by Zd × {0, 1}).
We use the notation C b Γ to specify that C is a finite subset of Γ. For K ⊂ Γ, x ∈ AΓ, let
xK ∈ AK be the restriction of x to K.

Definition 1.10 (Gibbs potential). A Gibbs potential on Γ is a family ϕ = (ϕC)CbΓ of
functions ϕC : AC → R.

By convention, for x ∈ AΓ, we set ϕC(x) = ϕC(xC).

The potential ϕ has a finite range if there exists L ∈ N such that ϕC ≡ 0 as soon as the
set C contains two elements at distance larger than L in the graph. In the following, we will
consider only finite range potentials. For a set K ⊂ Γ, we define V(K) as the union of the
sets C b Γ such that C ∩K 6= ∅ and ϕC 6≡ 0. We also define ∂K = V(K) \K.

Definition 1.11 (Gibbs measure). A measure µ on AΓ is a Gibbs measure with potential ϕ
if for any finite sets J and K such that V(K) ⊂ J ,

µ
(

[xK ]
∣∣∣ [xJ\K ]

)
=

1

Z(x∂K)
exp

(
−

∑

C∩K 6=∅

ϕC(x)
)
,

as soon as µ([xJ\K ]) > 0, where Z(x∂K) is a normalising factor depending only on x∂K .

In the classical approach, the Kolmogorov extension theorem defines a probability mea-
sure given a family of consistent finite-dimensional distributions. Here, the marginals are
specified through their conditional distributions. This is referred to as the DLR approach,
in tribute to Dobrushin, Lanford and Ruelle. One can prove that for each potential ϕ, there
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exists always at least one associated Gibbs measure. But there can be several ones. We
denote by G(ϕ) the set of Gibbs measure with potential ϕ. It is a non-empty, convex and
compact set of M(AΓ). We say that there is a phase transition if there are several Gibbs
measures associated to the same potential. An important result is that on the graph Γ = Z,
there are no phase transitions [Geo11].

Gibbs measures are Markov random fields. As already mentioned, there is in fact an
equivalence between Markov random fields and Gibbs measures with finite range poten-
tials [Spi71, Geo11].

1.4.2 PCA and equilibrium statistical mechanics

In this section, we present the correspondence between the stationary space-time diagrams
of a PCA defined on Zd, and the Gibbs measures corresponding to a related potential defined
on the graph Zd+1.

Let us consider a positive-rate PCA F on Zd of neighbourhood N and local function f .
We define Γ as the graph of vertices Zd+1, with edges between (k, n + 1) and (k + v, n) for
any (k, n, v) ∈ Zd × Z×N . For (k, n) ∈ Zd × Z, we define the set F (k, n) = {(k + v, n) ; v ∈
N} ∪ {(k, n+ 1)}. We define the potential ϕ on Zd+1 by:

ϕF (k,n)(x) = − log f((xnk+v)v∈N )(xn+1
k ),

and ϕC ≡ 0 if there are no (k, n) ∈ Zd × Z such that C = F (k, n).

This potential is invariant under temporal and spatial translations in the space-time
diagram.

Proposition 1.1 ([GKLM89]). The translation-invariant Gibbs measures for ϕ correspond
exactly to the translation-invariant space-time diagrams for F .

Corollary 1.1. There is a phase transition for ϕ if and only if F has several invariant
measures.

In Prop. 1.1, the difficulty consists in showing that any translation-invariant Gibbs mea-
sures correspond to the invariant space-time diagrams for F . The proof uses conditional
entropy and the variational principle. The other direction, stating that an invariant space-
time diagram for F is a Gibbs measure for ϕ, is easier and remains true without the positive
rates assumption.

Let us consider a PCA on Z, of neighbourhood N = {−1, 0, 1}. We consider a portion of
space-time diagram as in Fig. 1.1, with time going up. A consequence of Prop. 1.1 is that if
the space-time diagram is translation-invariant, the conditional distribution of the central cell
knowing all the other values of the space-time diagram is equal to its conditional distribution
knowing the states of the 10 neighbouring cells represented on the figure. Conditionally to
the values of these cells, the central cell takes the value σ with probability:

1

Z
f(a1, a2, a3)(σ) f(b1, b2, σ)(c1) f(b2, σ, b3)(c2) f(σ, b3, b4)(c3),

where

Z =
∑

α∈A
f(a1, a2, a3)(α) f(b1, b2, α)(c1) f(b2, α, b3)(c2) f(α, b3, b4)(c3).

It follows from Prop. 1.1 that any invariant measure of a PCA on Zd which is translation-
invariant is the projection of a Gibbs measure defined on Zd+1. But in general, projections
of Gibbs measures are not Gibbs measures.
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a1 a2 a3

b1 b2
σ

b4b3

c1 c2 c3

Figure 1.1: Illustration of Prop. 1.1.

Figure 1.2: Doubling graph of a PCA on Z of neighbourhood N = {−1, 0, 1}.

1.4.3 Reversibility

From any finite-range potential ϕ, one can define an interacting particle system such that
the set of Gibbs measures G(ϕ) is equal to the set of reversible invariant measures of the
dynamics [Lig05]. This is not true for PCA [Daw75, DKT90].

We say that an invariant measure µ of a PCA F is reversible if a stationary space-time
diagram (Xn

k )n∈Z associated to µ has the same distribution as the random field (X−nk )n∈Z
obtained when reversing the direction of time, or equivalently, if (X0, X1) has the same law
as (X1, X0) when X0 is distributed according to µ and X1 obtained by one iteration of the
PCA from X0. This means that both the transitions, from t = 0 to t = 1 and from t = 1
to t = 0, are described by the same PCA F . The measure µ is said to be a quasi-reversible
measure of F if the transition from t = 1 to t = 0 is described by a PCA, possibly different
from F .

Let us consider a PCA F on Zd, of neighbourhood N . The doubling graph of F is the
undirected graph of set of vertices Zd × {0, 1}, with edges between (k, t) and (k + v, 1 − t)
for any (k, v, t) ∈ Zd ×N ×{0, 1}. Fig. 1.2 represents the doubling graph for a PCA on Z of
neighbourhood N = {−1, 0, 1}.

To a measure µ on Zd, we can associate a measure µ on Γ = Zd×{0, 1}, corresponding to
the distribution of (X0, X1) when X0 is distributed according to µ, and X1 obtained from
X0 with the PCA.

One can prove that quasi-reversibility is equivalent to the condition that µ is a Markov
random field on Γ. The following property follows from this observation.

Proposition 1.2 ([Vas78]). An invariant measure µ of a positive-rate PCA F is quasi-
reversible if and only if the corresponding measure µ on Γ = Zd × {0, 1} is a Gibbs measure.

A potential ϕ on Γ is a pair potential if ϕC ≡ 0 as soon as C is not constituted of a
single site or of two adjacent vertices. In the context of Prop. 1.2, the Gibbs measure µ on
Γ = Zd × {0, 1} can be shown to be defined by a pair potential. If we want the measure µ
to be not only quasi-reversible, but reversible, this pair potential has to satisfy symmetry
conditions.

Let N be a symmetric neighbourhood, and let us consider a function φ : A → R, as
well as functions φv : A2 → R, for v ∈ N , such that φv(a, b) = φ−v(b, a). We define a
symmetric pair potential on Γ = Zd×{0, 1} by: ϕ{s} = φ for any s ∈ Γ, ϕ{(j,0),(k,1)}(xj , yk) =

φv(xj , yk) for j, k ∈ Zd satisfying v = j − k ∈ N , and ϕC ≡ 0 otherwise. By definition,
ϕ{(k,0),(j,1)}(yk, xj) = ϕ{(j,0),(k,1)}(xj , yk).

As a corollary of Prop. 1.2, we get the next proposition.
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Proposition 1.3 ([Vas78, KV80, DKT90]). If F is a positive-rate PCA, a necessary and suf-
ficient condition for the existence of at least one reversible invariant measure is the existence
of a symmetric pair potential ϕ such that the local function f can be represented by:

f((xv)v∈N )(α) =
1

Z(xN )
exp

(
−φ(α)−

∑

v∈N
φv(xv, α)

)
, (1.3)

where Z(xN ) =
∑

γ∈A exp
(
−φ(γ)−∑v∈N φv(xv, γ)

)
. Under this condition, the reversible

measures are exactly the projections on Zd of the Gibbs measures on Γ = Zd × {0, 1} of
potential ϕ derived from φ, that are equal on both copies of Zd. They are themselves Gibbs
measures on Zd, of potential ϕ̂ defined by:

ϕ̂{k} = φ for any k ∈ Z, ϕ̂k+N ((xk+v)v∈N ) = − logZ(xk+N ), and ϕ̂C ≡ 0 otherwise.

We can associate this proposition to the following theorem, proved in the thesis of Dai
Pra [DP92, DPLR02], to obtain Corollary 1.2.

Theorem 1.1. If there exists a potential ϕ̂ on AZd such that at least one translation-invariant
measure µ, invariant for the PCA F , is a Gibbs measure with respect to the potential ϕ̂,
then all the translation-invariant measures that are invariant for F are Gibbs measures of
potential ϕ̂.

Corollary 1.2. If a PCA F has a reversible measure, then all its invariant measures are
reversible, and the set of its invariant measures is equal to the set of Gibbs measures of
potential ϕ̂ that are left invariant by F . In particular, if there is no phase transition for ϕ̂,
then F is ergodic.

Example 1.1. [[DKT90]] Consider the set of cells Z, the alphabet A = {0, 1}, and the
neighbourhood N = {−1, 0, 1}. The family of positive rates reversible PCA can be described
by three parameters c1, c2, c3 > 0, such that for x, y, z ∈ A,

f(x, y, z)(0) =
1

1 + c1c
x+z
2 cy3

f(x, y, z)(1) =
c1c

x+z
2 cy3

1 + c1c
x+z
2 cy3

.

Since there are no phase transitions for one-dimensional Gibbs potentials, these PCA are
ergodic, and their unique invariant measures are 2-Markov.

When the neighbourhood is asymmetric, it can be relevant to modify the representation of
the space-time diagram in order to recover a symmetric neighbourhood. For example, if E =
Z, N1 = {0, 1}, it appears natural to shift by 1/2 the image X1 of the initial configuration X0,
which amounts to consider that the neighbourhood is in fact N ′1 = {−1/2, 1/2}. In the same
way, if E = Z2, N2 = {(0, 0), (0, 1), (1, 0), (1, 1)}, one can shift the image of a configuration
by the vector (1/2, 1/2), which corresponds to the choice of a symmetric neighbourhood
N ′2 = {(±1/2,±1/2)}. The respective doubling graphs are then represented as in Fig. 1.3.
The notion of reversibility and all the results of this section can be extended to this context.
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Figure 1.3: Symmetric doubling graphs associated to the neighbourhoods N1 and N2.
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PCA and their invariant measures:
a general approach
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Chapter 2

Different viewpoints on PCA

Then I thought of something, all of a sudden. “Hey, listen,” I said. “You know
those ducks in that lagoon right near Central Park South? That little lake? By any
chance, do you happen to know where they go, the ducks, when it gets all frozen
over? Do you happen to know, by any chance?” I realized it was only one chance
in a million.

– J. D. Salinger, The Catcher in the Rye
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In this chapter, we first discuss the definition of PCA given in Chap. 1, and then present
different viewpoints on PCA, coming from statistical mechanics, computation theory, and
biology modelling.

2.1 Discussion of the definition of PCA

In the definition of PCA given in Chap. 1, Sec. 1.3, we have made the assumption that the
updatings of different cells were independent conditionally to the value of their neighbours.
Depending on the modelling context, it might be more convenient to weaken this assumption.
For instance, it is practical to define the discrete TASEP model, see below, as a generalised
PCA.

Example 2.1 (Discrete TASEP). TASEP stands for Totally Asymetric Simple Exclusion
Process. Here, we consider a discrete version of the model. The continuous-time version is a
standard and widely studied model of interacting particle systems.

The alphabet is A = {0, 1}, a 1 standing for a particle and a 0 for an empty space, and
at each time step, if its right neighbour is empty, a particle jumps to the right with some
probability p ∈ (0, 1).

Strictly speaking, this model is not a PCA since the updates of two adjacent cells are
dependent: if a cell is in state 1 and the neighbouring right cell in state 0, either the states
of both cell will change (probability p) or none of them (probability 1− p).

41
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To include such models, alternative definitions of PCA have been proposed, and we
now present one of them [AST13]. The set of cells is still E = Zd, and we have a finite
neighbourhood N . But in addition to the finite alphabet A, we assume that we are given a
finite set R called the random symbols, and the transition function is now a (deterministic)

function: ϕ : AN ×RN → A. At each time step, starting from some configuration in AZd ,
a configuration of random symbols is chosen in RZd according to a given Bernoulli product
measure, and then, the transition function ϕ is applied to obtain a new configuration in AZd .
This also defines a Markov chain on AZd .

With this setting, the previous TASEP model can be implemented by introducing a
set R = {a, i}. Each cell is allocated independently the random symbol a with probabil-
ity p (“active” cell) and i with probability 1 − p (“inactive” cell), the neighbourhood is
N = {−1, 0, 1} and the function ϕ is defined, for x−1, x0, x1 ∈ A and r−1, r0, r1 ∈ R, by:
ϕ((x−1, x0, x1), (r−1, r0, r1)) =

{
0 if [x−1 = x0 = 0] ∨ [x−1 = 1, x0 = 0, r−1 = i] ∨ [x0 = 1, x1 = 0, r0 = a]

1 if [x0 = x1 = 1] ∨ [x−1 = 1, x0 = 0, r−1 = a] ∨ [x0 = 1, x1 = 0, r0 = i]
.

This definition allows more flexibility and can be favoured in some cases, for practical
purposes. But, in essence, it is not really different from the one given in Chap. 1. Indeed,
given a set R of symbols that are to be sampled according to a Bernoulli product measure
µp, and a transition function ϕ : AN × RN → A, we can define a PCA F (in the sense
of Def. 1.4), on the extended alphabet B = A × R that presents the same behaviour. Its
transition function is defined for (av, rv)v∈N ∈ BN by:

f((xv, rv)v∈N )(a, b) =

{
pb if φ((xv, rv)v∈N ) = a,

0 otherwise.

The difference is that one is now interested in the projections of the trajectories on the
first coordinates, giving configurations in AZd . In fact, the PCA F can be viewed as operating
on two tapes, one with the A-symbols and one with the R-symbols. At each time step, the
A-tape is updated by applying ϕ, and the R-tape is updated by choosing brand new random
symbols, independently of everything. Concentrating on the A-tape of the classical PCA F ,
we recover exactly the behaviour of the “generalised” PCA.

If we do not assume anymore that the elements of the random symbols are chosen accord-
ing to a Bernoulli product measure but from any probability measure on RZd , the models

obtained are no more directly included in our definition of PCA.

2.2 Traffic models and queues

Some particular PCA are tightly related to queues models. Exhibiting a correspondence
between a PCA and a queue system can be an efficient tool to prove properties of the
invariant measure, by transposing to PCA well-known results of queueing theory.

Let us come back to the discrete TASEP model. Despite its simplicity, it shows a rich
behaviour, and appears in very different contexts, such as random growth models (last-
passage percolation on Z2), and random domino tilings [CEP96, JPS98]. But first, there
is an important connection between the TASEP and tandem queues, that is described in
Fig. 2.1.

Precisely, a configuration of {0, 1}Z is interpreted as a bi-infinite sequence of queues: each
0 corresponds to a queue with an infinite capacity buffer and the the consecutive 1’s on its
left (if any) correspond to the customers waiting in line at the queue. The dynamics of
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the TASEP PCA translates as follows for the queueing model: at a given queue, customers
are served one by one in their order of arrival, their service time is positive geometric of
parameter 1− p, and upon being served a customer joins instantaneously the next queue to
its right.

This is a standard model in queueing theory, which enjoys remarkable properties. We
can backtrack the results obtained for the queueing model to the TASEP PCA, to get next
result.

1 1 1 0 1 0 0 1 1 1 1 1 0

Figure 2.1: From the TASEP to tandem queues.

For any q ∈ (0, p), define the Markov measure νq of transition matrix:

Q =

(
p−q
p

q
p

p−q
p(1−q)

q(1−p)
p(1−q)

)
,

so that

νq([0]) =
p− q
p− q2,

and νq([1]) =
q(1− q)
p− q2

.

Proposition 2.1. Consider the TASEP PCA Tp for p ∈ (0, 1). For any q ∈ (0, p), the
Markovian measure νq is an invariant measure of Tp.

Proof. To prove that νq is an invariant measure, a first way to proceed is simply to check
“by hand” that it is left invariant by the dynamics [JPS98, Sec. 4.1]. The verification has to
be made for all cylinders. However, such a proof is not very informative, hiding in particular
how the right invariant measures were guessed. Let us sketch instead a queueing theoretic
argument.

Consider a single queue with “positive gometric” services of parameter p, that is, at each
time step, if the buffer is non-empty, there is a departure with probability p, independently
of the past. Asume that the arrivals to the queue are distributed according to B⊗Zq , q ∈ (0, p),
that is, at each time step, there is an arrival with probability q, independently of the past.
Then, it can be checked immediately that the equilibrium queue-length process (which is a
birth-and-death Markov chain) is distributed according to π defined by:

π0 =
p− q
p

, ∀n ≥ 1, πn =
(q(1− p)
p(1− q)

)n−1 q

p(1− q)
p− q
p

. (2.1)

Furthermore, the equilibrium departure process from the queue is distributed according to
B⊗Zq . This last result is known as a “Burke-type” theorem, since an analogous result was first
proved by Burke [Bur56] in the context of continuous-time queues with exponential services,
with a later and transparent proof by Reich [Rei57]. For the present setting, we also refer to
the article of Draief, Mairesse and O’Connel [DMO05].

Consider now several of the above queues in tandem. The departure process from a
queue is the arrival process to the next queue. According to the Burke-type theorem, the
arrival process to each queue is distributed according to B⊗Zq . An even stronger result holds:
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in equilibrium, the different queue-lengths are distributed according to π and independent.
This last result is known as a “product-form” theorem.

By letting the number of queues go to infinity, and by using the translation of Fig. 2.1,
one can retrieve the desired result. In particular, the matrix Q can be derived from (2.1).
For instance, Q0,0, the probability to have a 0 followed by a 0 in the TASEP, is equal
to π0 = (p − q)/p, the probability to have an empty queue in the queueing model (see
Fig. 2.1).

The discrete TASEP thus admits a whole family of Markov invariant measures. One
can prove that the invariant measures of Tp which are translation-invariant are precisely the
convex combinations of νq, q ∈ (0, p), δ0Z , and δ1Z .

As discussed in the previous section, the discrete TASEP is not a PCA in the strict
sense, but to obtain a PCA model, it is sufficient to extend the alphabet by adding a one-bit
information telling in advance if a particle is likely to jump at the next step of time or not.

We present now a dual model which is striclty speaking a PCA on the alphabetA = {0, 1}.
Its neighbourhood is N = {−1, 0, 1} and the local rule is given by:

f(0, 0, 1) = pδ1 + (1− p)δ0, f(1, 1, 0) = (1− p)δ1 + pδ0, and f(x, y, z) = δy otherwise.

The interpretation as a queue system is yet as follows: a sequence of n consecutive 0 (resp.
1) represents a queue of n−1 customers. The queues are in tandem and at each step of time,
the first customer of a queue is served with probability p and then jumps to the next queue.
Once again, results of queueing theory allow to exhibit Markov invariant measures for that
PCA.

2.3 Directed animals

For p ∈ (0, 1), let us introduce the PCA Fp on Z of alphabet A = {0, 1}, and neighbourhood
N = {−1, 0}, defined by the local function

f(x, y)(1) =

{
p if x = y = 0,

0 otherwise,

see Fig. 2 of the introductory chapter.

As a consequence of Th. 4.2 of Chap. 4, this PCA has a Markov invariant measure, of
transition matrix

Q =

(
1− a a
1− b b

)
,

with parameters given by:

a =
2p2 − p− 1 +

√
1 + 2p− 3p2

2p2
, b =

1 + p−
√

1 + 2p− 3p2

2p
. (2.2)

We denote by νp this Markov invariant measure of Fp.

We will see that this PCA plays an unexpected role for the enumeration of directed
animals. So called “animals” are classical objects in combinatorics. They are related to
(site) percolation models. The ultimate goal is to count the number of animals of a given
size. There exist two variants: classical and directed animals. Here we consider only directed
animals which are simpler to study. We will see that a particular PCA can be introduced for
the enumeration of directed animals.
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Consider the directed infinite graph:

(Z× N, A), A =
{

(i, j)→ (i+ v, j + 1) | (i, j) ∈ Z× N, v ∈ {0, 1}
}
.

Let C be a non-empty finite subset of Z. A directed animal of base C is a finite subset E
of Z× N such that:

• E ∩ (Z× {0}) = C × {0};

• ∀x ∈ E, ∃x0 ∈ C × {0}, x1, . . . , xn−1 ∈ E, xn = x, ∀i, xi → xi+1.

A directed animal is a directed animal of base {0}, see Fig. 2.2.

Figure 2.2: A directed animal (left), not a directed animal (right).

It is customary in combinatorics to count objects according to their size, and to encap-
sulate all the information in a formal series. The counting series of directed animals of base
C, respectively of directed animals, is the formal series defined by:

SC(x) =
∑

E: DA baseC

x|E|, S(x) = S{0}(x) . (2.3)

The coefficient of xn in S(x) is the number of directed animals of size n.

The goal of the section is to give a sketch of the proof of next theorem, which is based
on a connection with the PCA Fp.

Theorem 2.1 ([Dha83]). The counting series of directed animals is given by:

S(x) =
1

2

( √1− 2x− 3x2

1− 3x
− 1

)
. (2.4)

From a combinatorics point of view, this is an ideal result, since S(x) is algebraic and
defined in an explicit way. By performing a Taylor expansion around 0 of S(x), we get the
first terms of the counting series.

Proof. Removing the bottom line of a directed animal provides either the empty set or a
new animal on the lines {1, 2, . . .}. This simple observation provides a recurrence relation on
counting series:

SC(x) = x|C|
( ∑

D⊂C+N
SD(x)

)
, (2.5)

with the convention S∅(x) = 1.

Recall that νp is the Markov invariant measure of Fp, defined above. For a finite subset
C of Z, set

sC(p) = νp([1 · · · 1]C).
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By definition, it is the probability, under the measure νp, that all of the sites of C are in state
1. Consider a sequence (Xi)i∈Z distributed according to νp, and let (Yi)i∈Z be a realisation
of the image of (Xi)i∈Z by the PCA Fp. It implies that (Yi)i∈Z is also distributed according
to νp. We have:

sC(p) = P
(
∀i ∈ C, Yi = 1

)
= P

(
∀i ∈ C +N , Xi = 0

)
p|C|.

According to the inclusion-exclusion principle, we get:

P
(
∀i ∈ C +N , Xi = 0

)
=

∑

D⊂C+N
(−1)|D|P

(
∀i ∈ D, Xi = 1

)
=

∑

D⊂C+N
(−1)|D|sD(p),

with the convention s∅(p) = 1. So, we have:

sC(p) = p|C|
∑

D⊂C+N
(−1)|D|sD(p). (2.6)

By comparing (2.3) and (2.6), we get that

SC(−p) = (−1)|C|sC(p), S(−p) = −νp([1]), (2.7)

are possible solutions for the recurrence equations (2.5). This provides an unexpected relation
between two a priori unrelated models.

Now we use the fact that we have an exact expression for the invariant measure νp, see

(2.2). We obtain immediately νp([1]) = a/(1 − b + a) = (
√

1 + 2p− 3p2 − 1 − 3p)/(2 + 6p).
By evaluating S formally according to (2.7), we obtain (2.4).

The last step consists in argueing that S is indeed the counting series. This requires an
argument since the recurrence relations (2.5) may admit several families of solutions, with
only one of them defining the counting series.

Directed animals can be defined on other infinite regular graphs, and the connection
with a PCA model still holds [Alb09]. In all cases where the counting series can be explicitly
computed, it is done by using the PCA connection. The problem is that the invariant measure
of the associated PCA cannot always be explicited.

2.4 From CA to PCA: noisy CA and α-asynchronous CA

We present two specifications of PCA that provide examples of particular interest. They
both consist in considering a deterministic CA and “perturbating” the rule, either by doing
random errors or by introducing asynchronism in the evolution.

Noisy CA. Let F be a deterministic CA on AZd , of transition function f , and let ε ∈ (0, 1).
We assume that with probability ε, when updating the value of a cell, a letter is chosen
uniformly in A, instead of applying the deterministic function f . If the probability of doing
such errors is independent for different cells, this defines a PCA of transition function ϕ given
by:

ϕ((xv)v∈N ) = (1− ε)δf((xv)v∈N ) + ε Unif,

where Unif denotes the uniform measure on A. Starting from a deterministic CA, we thus
define a positive-rate PCA. One can also consider other variants of faulty CA, by assuming
that the noise is not uniformly distributed in A.
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Figure 2.3: Space-time diagrams of the PCA of Ex. 2.2, for ε = 0, and ε = 0.1, starting from
a uniform Bernoulli measure.

Example 2.2. Let A = {0, 1}, E = Z, and N = {0, 1}. For some ε ∈ (0, 1), consider the
local function

f(x, y) = (1− ε) δx+y + ε δx+y+1,

where the sums x + y and x + y + 1 are computed modulo 2. For ε = 0, we obtain the
deterministic additive CA defined by: F (x)i = xi + xi+1 for any i ∈ Z. For small values
of ε > 0, the PCA can be interpreted as a perturbation of that deterministic CA, with
some errors occurring in each cell independently. In Fig. 2.3, we represent two space-time
diagrams, for respectively ε = 0 and ε = 0.1.

One can prove [DKT90, Chap. 16 and 17] that for any value of ε ∈ (0, 1), the PCA is
ergodic and that its unique invariant measure is the uniform mesure λ, that is, the Bernoulli
product measures of parameter 1/2, defined by λ = B⊗Z1/2. In Chap. 4, we will study criteria
for having a Bernoulli product invariant measure. However, we can here give an elementary
proof of the fact that λ is an invariant measure.

Let us look at the possible antecedents of a word v ∈ An. If we know for each cell if
its value has been computed using the sum rule (probability 1 − ε) or by the sum plus 1
(probability ε, event corresponding to an “error”), there are exactly two possible sequences
u ∈ An+1 whose outcome is v: the first term u1 can be chosen to be either 0 or 1, and
then, the rest of the sequence u is entirely determined. And these two words have the same
probability 2−(n+1) with respect to the measure λ. We have thus:

λF ([v]) =
∑

ϑ∈{0,1}n
2(1− ε)|ϑ|0ε|ϑ|12−(n+1),

where ϑi = 1 corresponds to an “error” at cell i (event of probability ε). It follows that:
λF ([v]) = 2−n = λ([v]).

Noisy CA have been introduced in relation with the question of reliable computation. In
the previous example, even for an arbitrarily small probability of noise ε, when iterating the
CA, all the information of the initial configuration is lost: whatever the initial configuration
is, the iterates of the PCA converge to the uniform measure. In Sec. 2.5, we will present a two-
dimensional positive-rate PCA having several invariant measures. In that case, “something”
can thus be remembered forever about the initial configuration. In Chap. 6, we will also come
back to this question of reliable computation, which is related to the positive rates problem.
In particular, we refer to that chapter for the bibliographical references.
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Figure 2.4: Symmetric doubling graph (continuous lines) of the PCA, defined on Z2 (dashed
lines).

α-asynchronous CA. Let F be a deterministic CA on AZd , of neighbourhood N contain-
ing the origin 0 of Zd, and of transition function f . Let α ∈ (0, 1). We now assume that
with probability 1−α, when updating the value of a cell, its current value is kept, instead of
applying the deterministic function f . This defines a PCA of transition function ϕ given by:

ϕ((xv)v∈N ) = α δf((xv)v∈N ) + (1− α) δx0 .

The α-asynchronous dynamics was studied experimentally and it was shown that the 256
elementary cellular automata produce various qualitative responses to asynchronism [FM05].
For some particular rules, when varying continuously the rate α, there appears a critical
value at which the behaviour of the PCA presents a qualitative change [Fat09].

2.5 A two-dimensional non-ergodic PCA with positive rates

Using the statistical mechanics approach of Chap. 1, Sec. 1.4, one can make use of the Ising
model to design a two-dimensional PCA with positive rates that is not ergodic [Vas78, KV80,
DKT90].

We introduce the alphabet A = {−1,+1}. We will define a non-ergodic positive-rate
PCA on AZ2

, of neighbourhood N = {(0, 0), (0, 1), (1, 0), (1, 1)}. But as mentionned at the
end of Sec. 1.4.3, we will prefer a symmetric representation of that neighbourhood.

Let us consider the doubling graph represented on the right part of Fig. 1.3. This graph
is in fact isomorphic to Z2. We define in an analogous way as in Sec. 1.4.3 a symmetrical
pair potential ϕ on that graph by setting φ ≡ 0 (no-contribution from self-interaction) and
φv(a, b) = −βab for any edge v. This potential corresponds to the classical Ising model. It
is known that for β large enough, this potential presents a phase transition: there exist at
least two translation invariant Gibbs measures, of density of +1 respectively strictly larger
and strictly smaller than 1/2.

Let us set ε = exp(−4β). Like in (1.3), we introduce the PCA F on Z2 of neighbourhood
N = {(0, 0), (0, 1), (1, 0), (1, 1)} defined by the transition function:

f(x, y, z, t)(+1) =
ε2

1 + ε2
,

ε

1 + ε
,

1

2
,

1

1 + ε
,

1

1 + ε2
, (2.8)

if there are respectively 0, 1, 2, 3 or 4 times the state +1 among x, y, z, t. This defines a
positive-rate PCA.
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Figure 2: Example of the application of the swarm interaction rule for the
central cell. Left: typical states for a cell and its neighbours, with neighbouring
fluxes (Eq. 3) and the director field Dc(x) of the center cell (Eq. 4). Right:
elements of Ω(2) and their associated alignment γ (Eq. 5), along with a table
of the computed weights (Eq. 6) for different values of α before normalisation
to probability.

transition probability for the interaction step to update from a state xc to a
new state xI

c ∈ Ω(k(x, c)) in the presence of the director field Dc(x) is given by:

P (xc → xI
c) =

1

Z
exp
�
α · γ

�
Jc(x

I), Dc(x)
� �

(6)

where:

• The normalisation factor Z is such that
�

xI
c∈Ω(k(x,c)) P (xc → xI

c) = 1.

• The alignment sensitivity α is a control parameter that varies the intensity
of the swarming effects.

An example of the application of the rule is shown on Fig. 2. Note that when
α = 0, all outcomes xI ∈ {0; 1}ν that conserve the number of particles have an
equal probability to be selected, regardless of their direction. The evolution of
the system will therefore be completely random. Inversely, when α → ∞, the
system becomes almost deterministic, that is, the selection always picks one of
the configurations that maximises the local alignment.

1.3 Monitoring the behaviour

To quantify the behaviour of our system, two different order parameters have
been used:

1. The mean velocity φ, introduced by Bussemaker et al., averages horizontal
and vertical momentum, in order to quantify a consensus in direction of
particles. For a configuration x, it is defined by:

φ(x) =
1

card(L)

�����
�

c∈L
(Jc(x))

�����
∞

(7)
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Figure 2.5: Example of neighbourhood configuration for the swarming model [BFC11].

By Prop. 1.3, any Gibbs measure µ of potential ϕ on the doubling graph provides an
invariant measure µ for the PCA when projecting it on the lattice on which the PCA is
defined (this lattice is the dashed grid on Fig. 2.4, whereas the doubling graph is represented
with continuous lines).

As a consequence, if β is large enough (corresponding to small values of ε), this PCA has
at least two different invariant measures of density of +1 respectively strictly larger than 1/2
and strictly smaller. Summarising the above, we obtain next result.

Proposition 2.2. Consider the positive-rate PCA defined on the set of cells Z2, with alphabet
A = {−1,+1}, neighbourhood N = {(0, 0), (0, 1), (1, 0), (1, 1)}, and local function f defined
by (2.8). For ε small enough, this PCA is non-ergodic with at least two invariant measures.

In Sec. 6.2.3, we will describe another example of non-ergodic two-dimensional PCA with
positive rates. This PCA, proposed by Toom, has the additional property of robustness: a
small perturbation of its probability transitions still preserves non-ergodicity.

2.6 PCA as a modelling tool: example of the swarming model

PCA have been widely used to model some physical and biological phenomena, following the
advice of Mark Kac: “Be wise, discretise!”. In this section, we present a model of swarming,
that has been introduced in order to understand how a collective motion can emerge from
a decentralised organisation, as observed for flock of birds. Beyond being interesting for
modelling, this PCA is also very interesting from a mathematical point of view: when varying
the parameters, different behaviours appear. The figures of this section, as well as the
qualitative comments on this model, are extracted from the works of Bouré, Chevrier and
Fatès [BFC11, BFC13].

The set of cells is E = Z2, and we divide each cell into four sites, represented by trian-
gles pointing east, west, north or south, each one being potentially occupied or empty, as
represented in Fig. 2.5. This corresponds to working with the alphabet A = {0, 1}4 of size
24 = 16, with for c ∈ A, c1 = 1 (resp. c2, c3, c4) if there is a particle pointing to the east
(resp. west, north, south). We denote the number of particles by |c| = c1 + c2 + c3 + c4, it
can be any integer between 0 and 4.

We define n1 = (1, 0), n2 = (−1, 0), n3 = (0, 1), n4 = (0,−1), and we set N = {n1, n2,
n3, n4}. We also introduce N0 = N ∪{0, 0}, which is known as the von Neumann neighbour-
hood. The local flux of c ∈ A, is defined by

J(c) =

4∑

i=1

cini.

The dynamics of the model consists in the successive applications of two transition rules,
applied to all cells synchronoulsy:
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! "

(a) (b) (c)

Figure 1: The cycle of a LGCA cell (a) at initial state, (b) after Interaction step,
(c) after Propagation step. By convention, black and white triangles represent
occupied and empty channels respectively.

formation of these behaviours. Finally, we discuss the system behaviour in the
light of our observations in Sec. 5.

1 A lattice-gas model of the Swarm

1.1 Lattice-Gas Cellular Automata

A lattice-gas cellular automaton (LGCA) is a discrete dynamical system defined
by a triplet {L, N , fI} where :

• L ⊂ Z2 is the array that forms the cellular space.

• N is a finite set of vectors called the neighbourhood. It associates to a cell
the set of its neighbouring cells. The sets N and L are such that for all
c ∈ L and for all n ∈ N , the neighbour c + n is in L.

• fI is the local interaction rule.

In lattice-gas cellular automata, neighbouring cells are connected via channels
through which particles can travel from one cell to another. For the sake of
simplicity, we will consider here that each channel is associated to a neighbour.
Consequently, the number of channels is given by ν = card(N ).

A configuration x denotes the state of the automaton; it is defined as a func-
tion x : L → Q ⊂ Nν which maps each cell to a set of states for the channels.
Each channel contains a given number of particles represented by an element
of N. The state of a cell c ∈ L is denoted by xc = (x1(c), ..., xν(c)) ∈ Q, where
xi(c) ∈ N is the state of the i-th channel that connects cell c and its neighbour
c + ni, with N = {n1, . . . , nν}.

The dynamics of a LGCA arises from the successive applications of two
transitions applied to all cells synchronously (see example on Fig. 1):

• The interaction step I reorganises the particles within each cell.
The result of the local transition fI : Qν+1 → Q is denoted by:

xI
c = fI(xc, xc+n1 , . . . , xc+nν ), with N = {n1, . . . , nν} . (1)
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Figure 2.6: The interaction and the propagation rules [BFC11].

• the interaction rule reorganises the particles within each cell,

• the propagation rule moves all particles according to the direction they occupy.

Fig. 2.6 presents an example of composition of these two rules.

The propagation rule is deterministic. If we see each cell as being divided into four parts
(E, W, N, S) that can be occupied or not, it corresponds to four shifts: all the particles
located in the E position of a cell are shifted to the east (and after the move, still occupy an
E position in their new cell), and the same for W, N, and S particles.

The interaction rule is a PCA that conserves the number of particles in each cell. Let us
describe this step. Let x ∈ AZ2

be some configuration, and let k ∈ Z2. After the interaction
step, the cell k will be in state c ∈ A with probability 0 if |xk| 6= |c|, and if |xk| = |c|, with
probability:

1

Z(xk+N0)
exp

(
α

4∑

i=1

J(c) · J(xk+ni)
)
,

where Zk(x) is the normalisation factor, defined by:

Z(xk+N0) =
∑

|c|=|xk|

exp
(
α

4∑

i=1

J(c) · J(xk+ni)
)
.

This PCA has some deterministic components: if xk = (0, 0, 0, 0) (resp. (1, 1, 1, 1)), then
with probability 1, cell k will be in the same state after the interaction step. The alignment
sensitivity α is a parameter controling the intensity of the dependence on the neighbours.

The composition of the two steps (interaction and propagation) can also be defined as
a strict PCA, by enlarging the neighbourhood and the alphabet. But we prefer to keep
the description of the model as the composition of these two simple steps. Experimental
studies (on finite lattices with periodic boundary conditions) show that depending on the
initial density of particles and the value of α, either disordered configurations are observed,
or particles find a consensus to move together in one or more directions. We do not enter
into the details, but present in Fig. 2.7 the diagram in which Bouré, Chevrier and Fatès sum
up the different phases observed [BFC11].

For α = 0, the interaction step gives an equal probability to each state c ∈ A such that
xk = c, regardless of the configuration of the neighbourhood of cell k, so that the behaviour is
disordered. In terms of invariant measure, the Bernoulli product measure on Z2 that consists
in occupying each elementary triangle independly with probability p, so that the probability
of a state c is given by:

∏4
i=1 p

ci
i (1 − p)1−ci provides an invariant measure of the model.

Indeed, this Bernoulli product measure is clearly invariant by the interaction step, and it is
also invariant for the propagation step since it defines four independent Bernoulli measures
on E, W, N, and S parts of the cells, and each of them is shift-invariant.
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Figure 2.7: The different phases observed for the swarming model [BFC11].

Let us now also consider the case α 6= 0. For the time being, let us consider only the
PCA defining the interaction step, that is interesting in itself. We work on the finite lattice
E = (Z/mZ) × (Z/nZ). For a given measure ν on {0, 1, 2, 3, 4}E , we define a measure π on
AE , by:

π(x) = ν(|x|)
∏

k∈E
Z(xk+N0),

where we write |x| for (|xk|)k∈E . This measure is an invariant measure with respect to the
interaction step. Let us denote by P the Markov chain onAE corresponding to the interaction
step. The measure π is a reversible measure for P , since for x, y ∈ AE , we have P (x, y) = 0
if |x| 6= |y|, and if |x| = |y|, then:

π(x)P (x, y) = ν(|x|)
∏

k∈E
Z(xk+N0)

∏

k∈E

1

Z(xk+N0)
exp

(
α

4∑

i=1

J(yk) · J(xk+ni)
)

= ν(|x|)
∏

k∈E
exp

(
α

4∑

i=1

J(yk) · J(xk+ni)
)

= ν(|x|) exp
(
α
∑

k∈E

4∑

i=1

J(yk) · J(xk+ni)
)

= ν(|y|) exp
(
α
∑

k∈E

4∑

i=1

J(xk) · J(yk+ni)
)

= π(y)P (y, x).

In order to understand the diagram of Fig. 2.7, a direction could be to study the values
of the parameters for which there exists a probability measure ν inducing a measure π not
only invariant with respect to the interaction step, but also with respect to the propagation
step.
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Chapter 3

Ergodicity and perfect sampling

Assis à sa caisse, il regardait la grande horloge fixée au-dessus du magasin de
meussieu Poucier, et il suivait la marche de la grande aiguille. Il réussissait à
la voir sauter une fois, deux fois, trois fois, puis tout à coup il se retrouvait un
quart d’heure plus tard et la grosse aiguille elle-même en avait profité pour bouger
sans qu’il s’en aperçût. Où était-il allé pendant ce temps là ?

– Raymond Queneau, Le dimanche de la vie
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The equilibrium of a PCA is studied via its invariant measures. A PCA is ergodic if it
has a unique and attractive invariant measure. Finding conditions to ensure ergodicity is a
difficult problem which has been thoroughly investigated [DKT90, Gác01]. When a PCA is
ergodic, it is usually impossible to determine the invariant measure explicitly, and simulation
becomes the alternative. Simulating PCA is known to be a challenging task, costly both
in time and space. Also, configurations cannot be tracked down one by one (there is an
infinite number of them when the set of cells is infinite) and may only be observed through
some measured parameters. The point is to have guarantees upon the results obtained from
simulations.

In this context, our contributions are as follows. First, we prove that the ergodicity
of a CA on Z is undecidable. This was mentioned an unsolved problem [Too01]. Since a
CA is a special case of a PCA, it also provides a new proof of the undecidability of the

53
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ergodicity of a PCA [DKT90, Too00]. Second, we propose an efficient perfect sampling
algorithm for ergodic PCA. Recall that a perfect sampling procedure is a random algorithm
which returns a configuration distributed according to the invariant measure. By applying
the procedure repeatedly, we can estimate the invariant measure with arbitrary precision.
We propose such an algorithm for PCA by adapting the coupling from the past method of
Propp and Wilson [PW96]. When the set of cells is finite, a PCA is a finite state space
Markov chain. Therefore, coupling from the past from all possible initial configurations
provides a basic perfect sampling procedure, but a very inefficient one since the number of
configurations is exponential in the number of cells. Here, the contribution consists in an
important simplification of the procedure. We define a new PCA on an extended alphabet,
called the envelope PCA (EPCA). We obtain a perfect sampling procedure for the original
PCA by running the EPCA on a single initial configuration. When the set of cells is infinite,
a PCA is a Markov chain on an uncountable state space. So there is no basic perfect sampling
procedure anymore. We prove the following: If the PCA is ergodic, then the EPCA may or
may not be ergodic. If it is ergodic, then we can use the EPCA to design an efficient perfect
sampling procedure (the result of the algorithm is the finite restriction of a configuration
with the right invariant distribution). The EPCA can be viewed as a systematic treatment
of ideas already used by Toom for percolation PCA [Too01, Sec. 2].

The perfect sampling procedure can also be run on a PCA whose ergodicity is unknown,
with the purpose of testing it. We illustrate this approach on the majority-flip PCA, proto-
type of a PCA whose equilibrium behaviour is not well understood.

3.1 Ergodicity of PCA

3.1.1 Invariant measures and ergodicity

A PCA has at least one invariant measure, and the set of invariant measures is convex and
compact. This is a standard fact, based on the observation that the setM(X ) of measures on
X is compact for the weak topology [DKT90]. Therefore, there are three possible situations
for a PCA:

(i) several invariant measures;

(ii) a unique invariant measure which is not attractive;

(iii) a unique invariant measure which is attractive (ergodic case).

Example 3.1. Let A = {0, 1}, E = Zd, and let N be a finite subset of Zd. Consider
0 < γ < 1 and the local function:

f((xv)v∈V ) = γ δmax(xv , v∈V ) + (1− γ) δ0.

The corresponding PCA is called the percolation PCA associated with N and γ. The par-
ticular case of the space E = Z and the neighbourhood N = {0, 1} is called the Stavskaya
PCA. Observe that the Dirac measure δ

0Zd
is an invariant measure. Using a coupling with a

site percolation model, one can prove the following [Too01, Sec. 2]. There exists γ∗ ∈ (0, 1)
such that:

γ < γ∗ =⇒ (iii) : ergodicity

γ > γ∗ =⇒ (i) : several invariant measures.

The exact value of γ∗ is not known but it satisfies (1/Card N ) ≤ γ∗ ≤ 53/54. In Fig. 3.1,
we represent three space-time diagrams of the percolation operator of neighbourhood N =
{−1, 0, 1}, from the configuration with only 1’s (full squares), for respectively γ = 0.45,
γ = 0.50 and γ = 0.55.
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Figure 3.1: Space-time diagrams of the percolation operator of neighbourhood N =
{−1, 0, 1}, for γ = 0.45, γ = 0.50 and γ = 0.55.

The existence of a PCA corresponding to situation (ii) was mentioned as an open problem
by Toom [Too01]. It was proved by Chassaing and Mairesse [CM11] that situation (ii) occurs
for the PCA on {0, 1}Z of neighbourhood N = {−1, 0}, and local function f defined by

f(0, 0)(1) = 1/2, f(0, 1)(1) = 0, f(1, 0)(1) = 1, f(1, 1)(1) = 1/2.

The unique invariant measure of that PCA is the mixture of two measures, concentrated on
(01)Z and (10)Z respectively, that are not shift-invariant, and cycle between each other. It
would be interesting to find other examples. In particular, it is still unknown if there are
also positive-rate PCA for which situation (ii) occurs.

The PCA of Ex. 3.1 exhibits a phase transition between the situations (i) and (iii). In
Sec. 3.3, we study a PCA that may have a phase transition between the situations (ii) and
(iii). It would provide the first example of this type.

3.1.2 Undecidability of the ergodicity

Deterministic cellular automata (CA) form the simplest class of PCA, it is therefore natural
to study their ergodicity. In this section, we prove the undecidability of ergodicity for CA
(Th. 3.1). This also gives a new proof of the undecidability of the ergodicity for PCA.

Remark. In the context of CA, the terminology of Def. 1.5 might be confusing. Indeed a
CA F can be viewed in two different ways:

(i) a (degenerated) Markov chain; (ii) a symbolic dynamical system.

In the dynamical system terminology, F is uniquely ergodic if:

∃!µ, µF = µ.

In the Markov chain terminology (that we adopt), F is ergodic if:

∃!µ, µF = µ and ∀ν, νFn w−→ µ,

where
w−→ stands for the weak convergence. Knowing if the unique ergodicity (of symbolic

dynamics) implies the ergodicity (of the Markovian theory) is an open question for CA.

Let F be a CA on X = AE , with E = Zd for some d ≥ 1. The limit set of F is defined by

LS(F ) =
⋂

n∈N
Fn(X ) .

In words, a configuration belongs to LS if it may occur after an arbitrarily long evolution of
the cellular automaton.
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Observe that LS(F ) is non-empty since it is the decreasing limit of non-empty closed
sets. A constructive way to show that LS(F ) is non-empty is as follows. Let us recall that a
monochromatic configuration is a configuration of the type αE , for some letter α ∈ A. The
image by F of a monochromatic configuration is monochromatic. In particular, since A is a
finite set, there exists a monochromatic periodic orbit for F :

αE0 → αE1 → · · · → αEk−1 → αE0 .

This implies that {αE0 , αE1 , . . . , αEk−1} ⊂ LS(F ).
Recall that δx denotes the probability measure concentrated on the configuration x. The

periodic orbit (αE0 , . . . , α
E
k−1) provides an invariant measure given by (δαE0

+ . . . + δαEk−1
)/k.

More generally, the support of any invariant measure is included in the limit set.

Definition 3.1 (Nilpotent CA). A CA is nilpotent if its limit set is a singleton.

Using the above observation on monochromatic periodic orbits, we see that a CA F
is nilpotent if and only if LS(F ) = {αE} for some letter α ∈ A. The following stronger
statement [CPY89] is proved using a compactness argument:

[ F nilpotent ] ⇐⇒ [ ∃α ∈ A, ∃N ∈ N, FN (AE) = {αE} ] .

We obtain the next proposition as a corollary.

Proposition 3.1. Consider a CA F . We have:

[ F nilpotent ] =⇒ [ F ergodic ] .

Proof. Let α ∈ A and N ∈ N be such that FN (AE) = {αE}. For any probability measure µ
on AE , we have µFN = δαE . Therefore, F is ergodic with unique invariant measure δαE .

We also have the converse statement.

Theorem 3.1. Consider a CA F on the set of cells Zd. We have:

[ F nilpotent ] ⇐⇒ [ F ergodic ] .

Proof. Let F be an ergodic CA. Assume that there exists a monochromatic periodic orbit
(αE0 , . . . , α

E
k−1) with k ≥ 2. Then µ = (δαE0

+ · · ·+ δαEk−1
)/k is the unique invariant measure.

The sequence δαZ
0
Fn does not converge weakly to µ, which is a contradiction. Therefore,

there exists a monochromatic fixed point: F (αE) = αE , and δαE is the unique invariant
measure.

Define the cylinder [αK ] = {x ∈ AE ; ∀i ∈ K, xi = α}, where K is some finite subset of
E. For any initial configuration x ∈ AE , using the ergodicity of P , we have:

δxF
n([αK ]) −→

n→+∞
δαE ([αK ]) = 1 .

But δxF
n is a Dirac measure, so δxF

n([αK ]) is equal to 0 or 1. Consequently, we have
δxF

n([αK ]) = 1 for n large enough, that is,

∃N ∈ N, ∀n ≥ N, ∀i ∈ K, Fn(x)i = α .

In words, in any space-time diagram of F , any finite column of base K becomes eventually
equal to αK . Using the terminology of Guillon and Richard, the CA F has a weakly nilpotent
trace. These two authors have proved that for one-dimensional CA, the weak nilpotency of
the trace implies the nilpotency of the CA [GR08]. A recent result [Sal12] proves that it is
still true in larger dimensions.

This completes the proof.
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Kari proved that the nilpotency of a CA on Z is undecidable [Kar92]. (For CA on Zd,
d ≥ 2, the proof was published a few years before [CPY89].) By coupling Kari’s result with
Th. 3.1, we obtain the following result.

Corollary 3.1. Consider a CA F on the set of cells Z. The ergodicity of F is undecidable.

The undecidability of the ergodicity of a PCA was a known result, proved by Kurdyu-
mov [DKT90] and Toom [Too00]. Kurdyumov’s and Toom’s proofs use a non-deterministic
PCA of dimension 1 and a reduction of the halting problem of a Turing machine.

Corollary 3.1 is a stronger statement. In fact, the (un)decidability of the ergodicity of
a CA was mentioned by Toom as an unsolved problem [Too01]. We point out that Corol-
lary 3.1 can also be obtained without Th. 3.1, by directly adapting Kari’s proof to show the
undecidability of the ergodicity of the CA associated with a North-West deterministic tile
set.

3.2 Sampling the invariant measure of an ergodic PCA

Generally, the invariant measure(s) of a PCA cannot be described explicitly. Numerical
simulations are consequently very useful to get an idea of the behaviour of a PCA. Given an
ergodic PCA, we propose a perfect sampling algorithm which generates configurations exactly
according to the invariant measure.

A perfect sampling procedure for finite Markov chains has been proposed by Propp and
Wilson [PW96] using a coupling from the past scheme. Perfect sampling procedures have
been developed since in various contexts. We mention below some works directly linked to
the present article. For more information see the annotated bibliography: Perfectly Random
Sampling with Markov Chains, http://dimacs.rutgers.edu/~dbwilson/exact.html/.

The complexity of the algorithm depends on the number of all possible initial conditions,
which is prohibitive for PCA. Various techniques have been developed to reduce the number
of trajectories that need to be considered in the coupling from the past procedure. A first
crucial observation already appears in the work of Propp and Wilson [PW96]: for a monotone
Markov chain, one has to consider two trajectories corresponding to minimal and maximal
states of the system. For anti-monotone systems, an analogous technique has been developed
by Häggström and Nelander [HN98] that also considers only extremal initial conditions. To
cope with more general situations, Huber [Hub04] introduced the idea of a bounding chain
for determining when coupling has occurred. The construction of these bounding chains is
model-dependent and in general not straightforward.

Our contribution is to show that the bounding chain ideas can be given in a particularly
simple and convenient form in the context of PCA via the introduction of the envelope PCA.

3.2.1 Basic coupling from the past for PCA

Finite set of cells

Consider an ergodic PCA F on the alphabet A and on a finite set of cells E, for example
Zm = Z/mZ. Let π be the invariant measure on X = AE . A perfect sampling procedure is a
random algorithm which returns a configuration x ∈ X with probability π(x). Let us present

http://dimacs.rutgers.edu/~dbwilson/exact.html/
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Figure 3.2: Coupling from the past.

coupling from the past (CFTP), perfect sampling procedure.

Algorithm 1: Basic CFTP algorithm for a finite set of cells

Data: An update function φ : X × [0, 1]E → X of a PCA. A family (r−nk )(k,n)∈E×N of
i.i.d. r.v. with uniform distribution in [0, 1].

Result: a state of AE distributed according to the invariant distribution of the PCA.
begin

t = 1 ;
repeat

R−t = X ;
for j = −t to −1 do

Rj+1 = {φ(x, (rji )i∈E) ; x ∈ Rj}
t = t+ 1

until |R0| = 1 ;
return the unique element of R0

end

The good way to implement this algorithm is to keep track of the partial couplings of
trajectories. This allows to consider only one-step transitions.

Proposition 3.2 ([PW96]). If the procedure stops almost surely, then the PCA is ergodic
and the output is distributed according to the invariant measure.

The converse statement is not true in general: even for ergodic PCA, there exist choices
of φ for which the procedure does not stop. Nevertheless, for PCA having positive rates (see
Def. 1.6), the algorithm stops almost surely in finite time if the update function is chosen
according to (1.2).

In Fig. 3.2, we illustrate the algorithm on the toy example of a PCA on the alphabet {0, 1}
and the set of cells Z2. The state space is thus X = {x1 = 00, x2 = 01, x3 = 10, x4 = 11}.
On this sample, the algorithm returns x2.

A sketch of the proof of Prop. 3.2 can be given using Fig. 3.2. On the last of the four
pictures, the Markov chain is run from time -4 onwards and its value is x2 at time 0. If we
had run the Markov chain from time −∞ to 0, then the result would obviously still be x2.
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Figure 3.3: Dependence cone of a cell.

But if we started from time −∞, then the Markov chain would have reached equilibrium by
time 0.

Infinite set of cells

Assume that the set of cells E is infinite (E = Zd, d ≥ 1) . Then a PCA defines a Markov
chain on the infinite state space X = AE , so the above procedure is not effective anymore.
However, it is possible to use the locality of the updating rule of a PCA to still define a
perfect sampling procedure. (This observation was already mentionned by van den Berg and
Steif [vdBS99].)

Let F be an ergodic PCA and denote by π its invariant distribution. In this context, a
perfect sampling procedure is a random algorithm taking as input a finite subset K of E and
returning an element xK ∈ AK with probability π([xK ]).

To get such a procedure, we use the following fact: if the PCA is run from time −k
onwards, then to compute the content of the cells in K at time 0, it is enough to consider the
cells in the finite dependence cone of K. This is illustrated in Figure 3.3 for the set of cells
E = Z and the neighbourhood N = {−1, 0, 1}, with the choice K = {0}. Observe that the
orientation has changed with respect to Fig. 3.2 in order to be consistent with the convention
used for space-time diagrams.

Let us define this formally. Let N be the neighbourhood of the PCA. Given a subset K
of E, the backward dependence cone of K corresponds to the family (V−t(K))t≥0 of subsets of
E defined recursively by V0(K) = K and V−t(K) = N + V−t+1(K). Let φ : X × [0, 1]E → X
be an update function, for instance the one defined according to (1.2). For a given subset
K of E, we denote φ−t : AV−t(K) × [0, 1]V−t+1(K) → AV−t+1(K) the corresponding restriction
of φ.
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With these notations, the algorithm can be written as follows.

Algorithm 2: Basic CFTP algorithm for an infinite set of cells

Data: An update function φ : X × [0, 1]E → X of a PCA. A family (r−nk )(k,n)∈E×N of
i.i.d. r.v. with uniform distribution in [0, 1]. A finite subset K of E.

Result: a state of AK distributed according to the invariant distribution of the PCA.
begin

V0(K) = K ;
t = 1 ;
repeat

V−t(K) = N + V−t+1(K) ;
R−t = AV−t(K) ;
for j = −t to −1 do

Rj+1 = {φj(x, (rji )i∈Vj+1(K)) ; x ∈ Rj} ⊂ AVj+1(K)

t = t+ 1
until |R0| = 1 ;
return the unique element of R0

end

Next proposition is an easy extension of Prop. 3.2.

Proposition 3.3. If the procedure stops almost surely, then the PCA is ergodic and the
output is distributed according to the marginal of the invariant measure.

The converse statement is not true in general. It would be interesting to know if it
holds true for the update function (1.2) and for PCA having positive rates (possibly under
additional hypothesis).

3.2.2 Envelope probabilistic cellular automata (EPCA)

The CFTP algorithm is inefficient when the state space is large. This is the case for PCA:
when E is finite, the set AE is very large, and when E is infinite, it is the number of
configurations living in the dependence cone described above which is very large. We cope
with this difficulty by introducing the envelope PCA.

To begin with, let us assume that F is a PCA on the alphabet A = {0, 1} (as previously,
the set of cells is denoted by E, the neighbourhood by N ⊂ E, and the local function by f).
The case of a general alphabet is treated in Sec. 3.2.6.

Definition of the EPCA

Let us introduce a new alphabet:

B = {0,1, ?}.

A word on B is to be thought as a word on A in which the letters corresponding to some
positions are not known, and are thus replaced by the symbol “?”. Formally we identify B
with 2A − ∅ as follows: 0 = {0}, 1 = {1}, and ? = {0, 1}. So each letter of B is a set of
possible letters of A. With this interpretation, we view a word on B as a set of words on A.
For instance,

?1? = {010, 011, 110, 111}.

We will associate to the PCA F a new PCA on the alphabet B, that we call the envelope
probabilistic cellular automaton of F .
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Definition 3.2 (Envelope PCA). The envelope probabilistic cellular automaton (EPCA) of
F , is the PCA env(F ) of alphabet B, defined on the set of cells E, with the same neigh-
bourhood N as for F , and a local function env(f) : BN → M(B) defined for each y ∈ BN
by

env(f)(y)(0) = min
x∈AN , x∈y

f(x)(0)

env(f)(y)(1) = min
x∈AN , x∈y

f(x)(1)

env(f)(y)(?) = 1− min
x∈AN , x∈y

f(x)(0)− min
x∈AN , x∈y

f(x)(1).

We point out that minx∈AN , x∈y f(x)(1) + maxx∈AN , x∈y f(x)(0) = 1, so that the last
quantity env(f)(y)(?) is non-negative.

Moreover, env(F ) acts like F on configurations which do not contain the letter “?”. More
precisely,

∀y ∈ AN , env(f)(y)(0) = f(y)(0), env(f)(y)(1) = f(y)(1), env(f)(y)(?) = 0 . (3.1)

In particular, we get the following.

Proposition 3.4. If the EPCA env(F ) is ergodic then the PCA F is ergodic.

Proof. According to (3.1), any invariant measure of F corresponds to an invariant measure
of env(F ). Therefore, if F has several invariant measures, so does env(F ). Assume that F
has a unique invariant measure µ which is non-ergodic. Let µ0 be such that µ0F

n does not
converge to µ. Then µ0 env(F )n does not converge either, see (3.1). To summarise, we have
proved that F non-ergodic implies env(F ) non-ergodic.

The converse of Prop. 3.4 is not true and counter-examples will be given in Sec. 3.2.4.

Construction of an update function for the EPCA.

Let us define the update function

φ̃ : BE × [0, 1]E → BE

of the PCA env(F ), by:

φ̃(y, r)k =





0 if 0 ≤ rk < env(f)((yk+v)v∈N )(0)
1 if 1− env(f)((yk+v)v∈N )(1) ≤ rk ≤ 1
? otherwise.

(3.2)

The value of φ̃(y, r)k as a function of rk can thus be represented as follows.

0

minx∈AN ,x∈(yk+v)v∈N f(x)(0) minx∈AN ,x∈(yk+v)v∈N f(x)(1)

1 rk

0 ? 1

For a PCA of neighbourhood N = {0, 1}, we represent below the construction of the
updates of the EPCA when the value of the neighbourhood is 0?.
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Let φ be the natural update function for the PCA P defined as in (1.2). Observe that
the function φ̃ coincides with φ on configurations which do not contain the letter “?”. Fur-
thermore, we have:

∀r ∈ [0, 1]E , ∀x ∈ AE , ∀y ∈ BE , x ∈ y =⇒ φ(x, r) ∈ φ̃(y, r) . (3.3)

3.2.3 Perfect sampling using EPCA

We propose two perfect sampling algorithms, for a finite and for an infinite number of cells.
We show that in both cases, the algorithm stops almost surely if and only if the EPCA
is ergodic (Th. 3.2). The ergodicity of the EPCA implies the ergodicity of the PCA but
the converse is not true: we provide a counterexample for each case, finite and infinite
(Sec. 3.2.4).We also give conditions of ergodicity of the EPCA (Prop. 3.5 and 3.6).

Finite set of cells

The idea is to consider only one trajectory of the EPCA - the one that starts from the initial
configuration ?E (coding the set of all configurations of the PCA). The algorithm stops when
at time 0, this trajectory hits the set AE .

Algorithm 3: Perfect sampling using the EPCA for a finite set of cells

Data: The pre-computed update function φ̃. A family (r−nk )(k,n)∈E×N of i.i.d. r.v.
with uniform distribution in [0, 1].

Result: a state of AE distributed according to the invariant distribution of the PCA.
begin

t = 1 ;
repeat

c = ?E ;
for j = −t to −1 do

c = φ̃(c, (rji )i∈E)

t = t+ 1
until c ∈ AE ;
return c

end

Infinite set of cells

As already mentioned in Sec. 3.2.1, when the set of cells E is infinite, one is no more interested
in generating a complete configuration of {0, 1}E according to the invariant measure π of F ,
but rather in simulating finite-dimensional marginals of π. Once again, we consider only one
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trajectory of the EPCA. Let K be a finite set of cells from E. We propose the following
algorithm to simulate the marginals of π corresponding to these cells.

Algorithm 4: Perfect sampling using the EPCA for an infinite set of cells

Data: The pre-computed update function φ̃. A family (r−nk )(k,n)∈E×N of i.i.d. r.v.
with uniform distribution in [0, 1]. A finite subset K of E.

Result: a state of AK distributed according to the invariant distribution of the PCA.
begin

V0(K) = K ;
t = 1 ;
repeat

V−t(K) = N + V−t+1(K) ;
c = ?V−t(K) ;
for j = −t to −1 do

c = φ̃j(c, (r
j
i )i∈Vj+1(K)) ∈ BVj+1(K)

t = t+ 1
until c ∈ AK ;
return c

end

Theorem 3.2. Algorithm 3, resp. 4, stops almost surely if and only if the EPCA is ergodic.
In that case, the output of the algorithm is distributed according to the unique invariant
measure of the PCA.

Proof. The argument is the same in the finite and infinite cases. We give it for the finite case.
Assume first that Algorithm 3 stops almost surely. By construction, it implies that for all µ0,
the measure µ0 env(F )n is asymptotically supported by AE . Therefore, we can strengthen
the result in Prop. 3.4: the invariant measures of env(F ) coincide with the invariant measures
of F . In that case, env(F ) is ergodic iff F is ergodic. Using (3.3), the halting of Algorithm 3
implies the halting of Algorithm 1. Furthermore, if we use the same samples (r−nk )(k,n)∈E×N,
Algorithms 3 and 1 will have the same output. According to Prop. 3.2, this output is
distributed according to the unique invariant measure of P . In particular, F is ergodic. So
env(F ) is ergodic.

Assume now that the EPCA is ergodic. The unique invariant measure π of env(F ) has to
be supported by AE . Also, by ergodicity, we have δ?E env(F )n

w−→ π. This means precisely
that the Algorithm 3 stops a.s.

3.2.4 Criteria of ergodicity for the EPCA

Finite set of cells

In the next proposition, we give a necessary and sufficient condition for the EPCA to be
ergodic. In particular, this condition is satisfied if the PCA has positive rates (see Def. 1.6).

Proposition 3.5. The EPCA env(F ) is ergodic if and only if env(f)(?N )(?) < 1. This
condition can also be written as:

min
x∈AN

f(x)(0) + min
x∈AN

f(x)(1) > 0. (3.4)

Proof. If env(f)(?N )(?) = 1, then for almost any r ∈ [0, 1]E , we have φ̃(?E , r) = ?E , so that
at each step of the algorithm, the value of c is ?E with probability 1.
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Conversely, if we assume for example that p = minx∈AN f(x)(0) > 0, then for any con-
figuration d ∈ BE , the probability to have φ̃(x, r) = 0E is greater than p|E|, so that the algo-
rithm stops almost surely, and the expectation of the running time can be roughly bounded
by 1/p|E|.

Infinite set of cells

For an infinite set of cells the situation is more complex. The condition of Prop. 3.5 is not
sufficient to ensure the ergodicity of the EPCA. A counter-example is given in Sec. 3.2.4.
First, we propose a rough sufficient condition of convergence for Algorithm 4.

Proposition 3.6. Let γ∗ ∈ (0, 1) be the critical probability of the percolation PCA with
neighbourhood N , see Ex. 3.1 and 3.1. The EPCA env(F ) is ergodic if

env(f)(?N )(?) < γ∗ (3.5)

and non-ergodic if
min

x∈BN−AN
env(f)(x)(?) > γ∗. (3.6)

Proof. Recall that B = {0,1, ?}. Define C = {d, ?}, with d = {0,1}. A word over C is
interpreted as a set of words over B, for instance, d? = {0?,1?}. The symbol d stands for
determined letter, as opposed to ? which represents an unknown letter.

We define a new PCA G on the alphabet C, with the same neighbourhood N as F and
env(F ), and with the transition function g : CN →M(C) defined by:

g(dN ) = δd, and ∀u ∈ CN − {dN }, g(u) = α δ? + (1− α) δd ,

for α = maxx∈BN env(f)(x)(?) = env(f)(?N )(?).
Observe that δdE is an invariant measure of G. Recall that φ̃ is an update function of

env(F ), see (3.2). Given the way G is defined, we can construct an update function φG of G
such that

∀x ∈ BE ,∀y ∈ CE ,∀r ∈ [0, 1]E , x ∈ y =⇒ φ̃(x, r) ∈ φG(y, r) . (3.7)

In particular, assume that G is ergodic. Then δ?E Gn
w−→ δdE . Using (3.7), it implies that

Algorithm 4 stops almost surely, and env(F ) is ergodic according to Th. 3.2. To summarise,
the ergodicity of G implies the ergodicity of env(F ).

Observe that the PCA G is a percolation PCA as defined in Ex. 3.1 (here, d plays the role
of 0 and ? plays the role of 1). Let γ∗ ∈ (0, 1) be the critical probability of the percolation
PCA with neighbourhood N , see Ex. 3.1. For α < γ∗, the percolation PCA G is ergodic.
This completes the proof of (3.5).

Define a PCA H on the alphabet C, with neighbourhood N , and with the transition
function:

h(dN ) = δd, and ∀u ∈ CN − {dN }, h(u) = β δ? + (1− β) δd ,

for β = minx∈BN−AN env(f)(x)(?). Given the way H is defined, we can construct an update
function φH of H such that

∀x ∈ BE , ∀y ∈ CE , ∀r ∈ [0, 1]E , ∀k ∈ E, [x ∈ y, φH(y, r)k = ?] =⇒ φ̃(x, r)k = ? .

Therefore, the ergodicity of env(F ) implies the ergodicity of H. Equivalently, the non-
ergodicity of H implies the non-ergodicity of env(F ). Observe that the PCA H is a perco-
lation PCA. Therefore, for β > γ∗, the percolation PCA H is non-ergodic. This completes
the proof of (3.6).
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Figure 3.4: Illustration of the proof of Prop. 3.7.

Counter-examples

Recall Prop. 3.4: [ EPCA ergodic ] =⇒ [ PCA ergodic ]. We now show that the converse is
not true.

Example 3.2. Consider the PCA with alphabet A = {0, 1}, neighbourhood N = {−1, 0, 1},
set of cells E = Z/nZ, and transition function

f(x, y, z) =

{
δ1−y if xyz ∈ {101, 010}
αδy + (1− α)δ1−y otherwise ,

for a parameter α ∈ (0, 1). This is the majority-flip PCA studied in Sec. 3.3. For n odd, it is
easy to check that the PCA is ergodic. However the associated EPCA satisfies env(f)(???) =
δ?. According to Prop. 3.5, the EPCA is not ergodic.

On the other hand, on a finite set of cells, if the PCA P is ergodic and has positive rates,
then Prop. 3.5 let us conclude that the EPCA is ergodic. This is not true anymore for an
infinite set of cells as emphasized by next example.

Example 3.3. Consider the noisy additive PCA of Ex. 2.2. This PCA has positive rates, in
particular, it satisfies (3.4). So the EPCA is ergodic on a finite set of cells. Now let the set
of cells be Z. The PCA is ergodic for ε ∈ (0, 1), see Ex. 2.2. Consider the associated EPCA
env(F ). Assume for instance that ε ∈ (0, 1/2). We have

env(f)(u) =

{
f(u) if u ∈ {0,1}N
εδ0 + εδ1 + (1− 2ε)δ? otherwise .

By applying Prop. 3.6, env(F ) is non-ergodic if 1− 2ε > γ∗.

3.2.5 Decay of correlations

In what follows, the set of cells is E = Zd, d ≥ 1. It is easy to prove that the invariant
measure of an ergodic PCA is shift-invariant. Using the coupling from the past tool, we give
conditions for the invariant measure of an ergodic PCA to be shift-mixing. We recall that
for n ∈ Zd, the shift σn is the homeomorphism defined by (1.1).

Definition 3.3 (Shift-mixing measure). A measure µ on X = AZd is shift-mixing if for any
cylinder sets A,B of X ,

lim
‖n‖→+∞

µ(A ∩ σ−n(B)) = µ(A)µ(B). (3.8)

The proof of the following proposition is inspired from the proof of the validity of the
coupling from the past method [PW96, HN98].
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Proposition 3.7. If Algorithm 2 stops almost surely, then the unique invariant measure of
the PCA is shift-mixing. It is in particular the case under condition (3.5).

Proof. Assume that F is an ergodic PCA, and denote by π its unique invariant measure. Let
K and L be two finite subsets of E, and denote by [xK ] and [yL] some cylinders corresponding
to these subsets. Since the perfect sampling algorithm stops almost surely, for each ε > 0,
there exists an integer tε such that with probability greater than 1− ε, the algorithm stops
before reaching the time −tε when it is run for the set of cells K or for the set of cells L.
If n ∈ Zd is such that ‖n‖ is large enough, the backward dependence cones corresponding
to K and σ−n(L) are disjoint if they are considered only after time −tε, that is: V−tε(K) ∩
V−tε(σ

−n(L)) = ∅ (see Fig. 3.4).

Let Z be the output of the algorithm if it is asked to sample the marginals of π corre-
sponding to the cells of K ∪ σ−n(L).

Imagine running the PCA from time −tε and set of cells V−tε(K) ∪ V−tε(σ−n(L)) up to
time 0, using the same update variables as the ones used to get Z. Choose the initial condition
at time −tε as follows: independently on V−tε(K) and V−tε(σ

−n(L)), and according to the
relevant marginals of π. Let X, resp. Y , be the output at time 0 on the set of cells K, resp.
σ−n(L). Observe that X and Y are distributed according to the marginals of π. Furthermore,
X and Y are independent since the dependence cones of K and σ−n(L) originating at time
−tε are disjoint.

We therefore obtain:

π([xK ] ∩ σ−n([yL]))− π([xK ])π([yL]) = P(ZK = xK , Zσ−n(L) = yL)− P(X = xK)P(Y = yL)

= P(ZK = xK , Zσ−n(L) = yL)− P(X = xK , Y = yL)

≤ P((ZK , Zσ−n(L)) = (xK , yL) and (X,Y ) 6= (xK , yL))

≤ P((ZK , Zσ−n(L)) 6= (X,Y )) ≤ 2ε .

In the same way, we get π([xK ])π([yL])−π([xK ]∩σ−n([yL])) ≤ 2ε. It completes the proof.

In Prop. 3.7, the coupling from the past method is not used as a sampling tool but as a
way to get theoretical results. Knowing if there exists an ergodic PCA having an invariant
measure which is not shift-mixing is an open question [CT10].

3.2.6 Extensions

Non-homogeneous probabilistic cellular automata (NH-PCA)

In a PCA, the dynamic is homogeneous in space. It is possible to get rid of this characteristic
by defining non-homogeneous PCA, for which the neighbourhood and the transition function
depend on the position of the cell. The definition below is to be compared with Def. 1.4.
The configuration space X = AE is unchanged.

Definition 3.4. For each k ∈ E, denote by Nk ⊂ E the (finite) neighbourhood of the cell
k, and by fk : ANk →M(A) the transition function associated to k. Set N (K) = ∪k∈KNk.
The non-homogeneous PCA (NH-PCA) of transition functions (fk)k∈E is the application
F :M(X )→M(X ), µ 7→ µF, defined on cylinders by

µF [yK ] =
∑

[xN (K)]∈C(N (K))

µ[xN (K)]
∏

k∈K
fk((xv)v∈Nk)(yk) .

Observe that it is not necessary for E to be equipped with a semigroup structure anymore.
We use this below to define the finite restriction of a PCA.
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It is quite straightforward to adapt the coupling from the past algorithms to NH-PCA.
More precisely, given a NH-PCA, we define the associated NH-EPCA by considering Def. 3.2
and replacing N and env(f) by Nk and env(f)k for each k ∈ E. The algorithms of Sec. 3.2.1
and 3.2.3 are then unchanged, and Prop. 3.4 and Th. 3.2 still hold in the non-homogeneous
setting.

In Sec. 3.3, we study the majority-flip PCA by approximating it by a sequence of NH-
PCA. Let us explain the construction in a general setting.

Let F be a PCA on the infinite set of cells E = Zd, with neighbourhood N and transition
function f : AN →M(A). Let D be a finite subset of E. Define the boundary of D by

∂D = (D +N ) \D,

Fix a probability measure ν on A. The restriction of F associated with ν and D is the
NH-PCA F (ν,D) with set of cells (D +N ) ∪D and neighbourhoods:

∀k ∈ D, Nk = {k}+N , ∀k ∈ ∂D, Nk = ∅ ;

and transition functions:

∀k ∈ D, fk = f, ∀k ∈ ∂D, fk(·) = ν .

In words, the boundary cells are i.i.d. of law ν and the cells of D are updated according to
F .

If µ is a probability measure on AS , where S is a finite subset of E, we define its extension
µ̃ on AE by setting, for a fixed letter α ∈ A:

∀x ∈ AE , µ̃(x) =

{
µ((xk)k∈S) if ∀i ∈ E \ S, xi = α

0 otherwise.

Lemma 3.1. Let (Di)i∈N be an increasing sequence of finite domains Di ⊂ E such that
∪i∈NDi = E. Let (νi)i∈N be a sequence of probability measures on A. For each i, let µi be
an invariant measure of F (νi, Di). Any accumulation point of the sequence (µ̃i)i∈N is an
invariant measure of the original PCA F defined on E.

Proof. Upon extracting a subsequence, we may assume that (µ̃j)j∈N converges to µ̃ ∈M(X ).
We need to prove that for any cylinder [yK ] ∈ C(K), we have µ̃F ([yK ]) = µ̃([yK ]).

By definition, µjF (νj , Dj) = µj . Let the subset K of E and the cylinder yK ∈ C(K) be
fixed. If j is large enough, µj([yK ]) = µ̃j([yK ]), and F (νj , Dj) and F coincide on K. We
deduce that µ̃jF ([yK ]) = µ̃j([yK ]). By taking the limit on both sides, we get µ̃F ([yK ]) =
µ̃([yK ]).

Alphabet with more than two elements

The EPCA and the associated algorithms have been defined on a two letters alphabet. It is
possible to extend the approach to a general finite alphabet. In this paragraph, we give a
sketch of the method that can be employed.

Let A be the finite alphabet. Let F be a PCA with set of cells E, neighbourhood N , and
transition function f : AN →M(A).

Consider the alphabet B = 2A−{∅}, that is, the set of non-empty subsets of A. A word
over B is viewed as a set of words over A.
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Figure 3.5: The transition function of the majority-flip PCA.

The EPCA env(F ) associated with F is a PCA on the alphabet B with neighbourhood
N and transition function env(f) that we now determine. Let us fix some v ∈ BN and define
ρS = minu∈v f(u)({S}). For a single letter a ∈ A, we still want to have: env(f)(v)({a}) =
minu∈v f(u)(a) = ρa. Now, let us consider some b ∈ A, b 6= a, we will set: env(f)(v)({a, b}) =
ρa,b − ρa − ρb, and so on.

By the inclusion-exclusion principle, we finally obtain the following formula for the tran-
sition function env(f):

∀v ∈ BN , ∀y ∈ B, env(f)(v)(y) =
∑

x⊂y
(−1)|y|−|x|min

u∈v
f(u)(x) .

For instance, env(f)(v)({0, 1, 2}) = ρ0,1,2 − ρ1,2 − ρ0,2 − ρ0,1 + ρ0 + ρ1 + ρ2.

The algorithms of Sec. 3.2.3 are unchanged. Observe however that the construction of an
update function is not as natural as in the two-letters alphabet case.

3.3 The majority-flip PCA: a case study

The majority-flip PCA is one of the simplest examples of PCA whose behaviour is not well
understood. Therefore, it provides a good case study for the sampling algorithms of Sec. 3.2.

3.3.1 Definition of the majority-flip PCA

Given 0 < α < 1, the PCA majority-flip(α), or simply majority-flip, is the PCA on the
alphabet A = {0, 1}, with set of cells E = Z (or Z/nZ), neighbourhood N = {−1, 0, 1}, and
transition function

f(x, y, z) = α δmaj(x,y,z) + (1− α) δ1−y ,

where maj : A3 → A is the majority function: the value of maj(x, y, z) is 0, resp. 1, if there
are two or three 0’s, resp 1’s, in the sequence x, y, z. The transition function of majority-
flip(α) can thus be represented as in Fig. 3.5. It consists in choosing independently for each
cell to apply the elementary rule 232 (with probability α) or to flip the value of the cell.

The PCA Minority(α) has also been studied [Sch09]. It is defined by the transition
function g(x, y, z) = f(1− x, 1− y, 1− z).

Gray has proved that all one-dimensional positive-rate monotonic two-state nearest-
neighbour PCA are ergodic [Gra87]. But here, majority-flip is not a rule with positive
rates, and it is not even monotonic, so that we cannot use this result.

Let x = (01)Z ∈ {0, 1}Z be defined by: ∀n ∈ Z, x2n = 0, x2n+1 = 1. The configuration
(10)Z is defined similarly. Consider the probability measure

µ = (δ(01)Z + δ(10)Z)/2 . (3.9)
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Clearly, µ is an invariant measure for the majority-flip PCA. The question is whether other
invariant measures exist.

To get some insight on this question, consider the majority-flip PCA on the set of cells
Zn = Z/nZ. This PCA has two completely different behaviours depending on the parity of
n. Indeed, a simple analysis of the structure of the transition matrix shows that the Markov
chain has a unique invariant measure which is (δ(01)n/2 + δ(10)n/2)/2 if n is even, and which

is supported on {0, 1}Zn if n is odd.

Let us come back to the majority-flip PCA on Z. The invariant measure µ in (3.9) can
be viewed as the “limit” over n of the invariant measures of the PCA on Z2n. What about
the “limits” of the invariant measures of the PCA on Z2n+1 ? Do they define other invariant
measures for the PCA on Z ?

One of the motivations of our work on perfect sampling algorithms for PCA was to test
the following conjecture, which is inspired by the observations made by Regnault [Reg08]
and Schabanel [Sch09] on a PCA equivalent to majority-flip. This conjecture concerns the
existence of a phase transition phenomenon for the marjority-flip PCA.

Conjecture. There exists αc ∈ (0, 1) such that majority-flip(α) has a unique invariant
measure if α < αc, and several invariant measures if α > αc.

In the next subsection, we give some rigorous (but partial) results about the invariant
measures of majority-flip(α). We first introduce a related PCA and use it to prove that if α
is large enough, majority-flip(α) has indeed non-trivial invariant measures; we then present
a dual model that could be used to provide some information for small values of α. The
last subsection is devoted to the experimental study of majority-flip(α) using the perfect
sampling tools developed in the previous section.

3.3.2 Theoretical study

A related model: the “flip-if-not-all-equal” PCA

Let us define as in the work of Regnault [Reg08], the PCA FINAE(α) of neighbourhood
N = {−1, 0, 1} and transition function g : {0, 1}N →M({0, 1}) given by

g(x, y, z) = α δflip-if-not-all-equal(x,y,z) + (1− α) δy ,

where the function flip-if-not-all-equal (FINAE), corresponding to the elementary cellular
automaton 178, is defined by

flip-if-not-all-equal(x, y, z) =

{
y if x = y = z

1− y otherwise.

Clearly, δ0Z and δ1Z are invariant measures of the PCA. Let us define flip-odd : {0, 1}Z →
{0, 1}Z and flip-even : {0, 1}Z → {0, 1}Z by, for x = (xi)i∈Z,

flip-odd(x)i =

{
xi if i is even

1− xi if i is odd
, flip-even(x)i =

{
1− xi if i is even

xi if i is odd.

If we extend flip-odd and flip-even to mappings on M({0, 1}Z), we have

majority-flip(α) = flip-odd ◦ FINAE(α) ◦ flip-even .



70 CHAPTER 3. ERGODICITY AND PERFECT SAMPLING

−4 −3 −2 −1 0 1 2 3 4

1

2

3

4

Figure 3.6: The graph G.

This equality can be checked on the local functions of the PCA majority-flip(α) and FINAE(α).
One thus obtains that if π is an invariant measure for FINAE(α), then

(flip-odd(π) + flip-even(π))/2

is an invariant measure for majority-flip(α). The invariant measures δ0Z and δ1Z of FINAE(α)
correspond to the invariant measure µ in (3.9) for majority-flip(α), and the existence of a
non-trivial invariant measure for FINAE(α) corresponds to the existence of a second invariant
measure for majority-flip(α).

Validity of the conjecture for large values of α

The partial result of Prop. 3.8 relies on ideas from Regnault [Reg08].

Proposition 3.8. Let pc be the percolation threshold of directed bond-percolation in N2. If
α ≥ 3

√
1− (1− pc)4, then majority-flip(α) has several invariant measures (resp. FINAE(α)

has other invariant measures than the combinations of δ0Z and δ1Z). It is in particular the
case if α ≥ 0.996.

Proof. It is known that 0.6298 ≤ pc ≤ 2/3, see for instance the work of Grimmett [Gri99].
This provides the bound 3

√
1− (1− pc)4 ≤ 0.996. Let us consider the directed graph G =

(N,A) such that the set of nodes is N = 2Z×2N∪(2Z+1)×(2N+1) and for each (i, j) ∈ N ,
there is an arc (oriented bond) from (i, j) to (i− 1, j+ 1) and one from (i, j) to (i+ 1, j+ 1).

Let S be some subset of 2Z× {0} called the source. The oriented bond-percolation on G
of parameter p and source S is defined as follows: each bound (edge) is open with probability
p and closed with probability 1 − p, independently of the others, and a node of N is said
to be wet if there is an open path joining it from some node of S. We say that the space-
time diagram (xtk)k∈Z,t∈N of FINAE(α) and the percolation model satisfy the correspondence
criterion at time t if for each wet cell (k, t) of height t, we have xtk 6= xtk+1 or xtk 6= xtk−1.

For values of (α, p) satisfying α ≥ 3
√

1− (1− p)4, Regnault is able to construct a coupling
between FINAE(α) and the percolation model such that if the correspondence criterion is
true at time t, it is still true at time t + 1. Let us take for the initial configuration of
FINAE(α) the configuration x0 defined by x0

k = 1 if k is odd and x0
k = 0 if n is even. We

also choose S = 2Z × {0} for the percolation model. The correspondence criterion is true
at time 0. By the coupling of Regnault [Reg08], the criterion is true at all time. Consider
the percolation model and the probability P((0, 2t) is wet). It is known [Gri99] that if p is
strictly greater than a certain critical value pc, this probability, which decreases with t, does
not tend to 0. Thus, for p > pc, there exists ηp > 0 such that P((0, 2t) is wet) > ηp for
all t ∈ N. By construction of the coupling, we obtain P(x2t

0 6= x2t
1 or x2t

0 6= x2t
−1) ≥ ηp for

all t ∈ N. This proves that for α ≥ 3
√

1− (1− pc)4, the PCA FINAE(α) has at least one
invariant measure which is not in the convex hull of the Dirac masses at the configurations
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Figure 3.7: Construction of the graph G1.

“all zeroes” and “all ones” (take any accumulation point of the Cesàro sums obtained from
the sequence obtained from the iterated of δx0 by FINAE). This result can be translated to
the majority-flip PCA.

A duality result with the double branching annihilating random walk

The aim of this subsection is to prove a duality result between FINAE(α) and a double
branching annihilating random walk (DBARW). The connection between these two models
is interesting in itself and could provide a new way to study the PCA majority-flip(α) for
small values of α. A similar duality result was already obtained for interacting particle
systems [CD91], and the behaviour of the DBARW is very well understood in continuous
time [Sud90], but its study appears to be more difficult in discrete time.

We now assume that α ≤ 2/3 (in particular, Prop. 3.8 does not apply). Let us define a
process (xtk)k∈Z,t∈N in the following way. For each (k, t) ∈ Z×N, we first choose independently
to do one (and only one) of the following:

1. with probability α/2, draw an arc from (k − 1, t) to (k, t+ 1),

2. with probability α/2, draw an arc from (k + 1, t) to (k, t+ 1),

3. with probability α/2, draw an arc from (k − 1, t) to (k, t + 1), an arc from (k, t) to
(k, t+ 1), and an arc from (k + 1, t) to (k, t+ 1),

4. with probability 1− 3α/2, draw an arc from (k, t) to (k, t+ 1).

We thus obtain a directed graph G1, that we will use to label each node of Z×N with a
letter of {0, 1}. The nodes of Z × {0} are labeled according to the initial configuration x0.
A node labeled by a 1 will be interpreted as being occupied. A node (k, t) ∈ Z × N is then
labeled by a 1 if and only if there is an odd number of paths leading to this node from an
occupied node of Z × {0}. This define a random field (xtk)k∈Z,t∈N representing the labels of
the nodes.

We claim that this field has the same distribution as a space-time diagram of FINAE(α)
starting from x0. Indeed, the value xt+1

k is equal to xtk−1 with probability α/2, to xtk+1 with
probability α/2, to xtk−1 +xtk +xtk+1 mod 2 with probability α/2 and to xtk with probability
1 − 3α/2. And one can check for each value (x, y, z) ∈ {0, 1}3 that these probabilities
coincide with the ones obtained with the local function flip-if-not-all-equal. For example, if
(xtk−1, x

t
k, x

t
k+1) = (0, 0, 1), the value of xt+1

k will be 1 if and only if case 2 or case 3 occurs, and
they have together a probability α/2 + α/2 = α. If (xtk−1, x

t
k, x

t
k+1) = (0, 1, 0), we will have

xt+1
k = 1 if and only if case 3 or case 4 occurs, which has a probability α/2+(1−3α/2) = 1−α.

And if (xtk−1, x
t
k, x

t
k+1) = (0, 0, 0) (resp. (1, 1, 1)), we will get a 0 (resp. a 1) in all cases.

We now consider the process (ytk)k∈Z,t∈N obtained from (xtk)k∈Z,t∈N by reversing time.
Formally, for each (k, t) ∈ Z× N, we first choose independently to do one (and only one) of
the following things:
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Figure 3.8: Construction of the graph G2.

1. with probability α/2, draw an arc from (k, t) to (k − 1, t+ 1);

2. with probability α/2, draw an arc from (k, t) to (k + 1, t+ 1);

3. with probability α/2, draw an arc from (k, t) to (k − 1, t + 1), an arc from (k, t) to
(k, t+ 1), and an arc from (k, t) to (k + 1, t+ 1);

4. with probability 1− 3α/2, draw an arc from (k, t) to (k, t+ 1).

We thus obtain again a directed graph G2, that we will use to label each node of Z× N
with a letter of {0, 1}. The nodes of Z×{0} are labeled according to the initial configuration
y0. A node labeled by a 1 will be interpreted as being occupied. A node (k, t) ∈ Z × N is
then labeled by a 1 if and only if there is an odd number of paths leading to this node from
an occupied node of Z× {0}. This define a random field (ytk)k∈Z,t∈N representing the labels
of the nodes. We claim that this field has the same distribution as the double branching

annihilating random walk that we now define. At time 0, a particle is placed on each cell k
of Z such that y0

k = 1, and at each step of time, every particle chooses independently of the
others do one (and only one) of the following things:

1. with probability α/2, move from node k to k − 1;

2. with probability α/2, move from node k to k + 1;

3. with probability α/2, stay at node k and create two new particles at nodes k − 1 and
k + 1;

4. with probability 1− 3α/2, stay at node k.

If after these choices, there is an even number of particles at a node, then all these particles
annihilate. If there is an odd number of them, only one particle survives. We set wtk = 1 if
and only if at time t, there is a particle at node k.

To summarise, we have the following relations:

FINAE ∼ (xtk)k∈Z,t∈N
time-reversal←→ (ytk)k∈Z,t∈N ∼ DBARW

The processes (xtk)k∈Z,t∈N and (ytk)k∈Z,t∈N are obtained one from another by reversing time.
This can be used to get nontrivial information for FINAE. For instance, if A represents the
set of occupied nodes at time 0 for x, that is to say x0 = 1A, we have the following duality
relation:

P x
0=1A(xtk 6= xtl) = P x

0=1A(xtk + xtl = 1)

= P(the total number of paths in G1 leading from A× {0} to (k, t) or (l, t) is odd)

= P(the total number of paths in G2 leading from (k, 0) or (l, 0) to A× {t} is odd)

= P y
0=1{k,l}(

∑

i∈A
yti is odd)
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Figure 3.9: Experimental study of majority-flip(α) (the configurations at odd times only are
represented on the space-time diagrams).

≤ P y0=1{k,l}(∃i ∈ A, yti = 1).

Thus, to prove that the probability for the PCA FINAE that two cells k and l will be
in different states at time t tends to 0 as t tends to +∞, it is sufficient to prove that in
the DBARW, starting from two particles, the probability of extinction of the population of
particles tends to 1.

3.3.3 Experimental study

We tried to get some numerical evidence for the conjecture of Sec. 3.3.1 using the perfect
sampling tools developed in the previous section. To study the majority-flip PCA experi-
mentally, a first idea would be to consider the same PCA on the set of cells Zn, n odd. This
does not work well. First, due to the state space explosion, computing exactly the invariant
measure is possible only for small values (we did it up to n = 9). Second, the algorithms of
Sec. 3.2 cannot be applied since the EPCA is not ergodic.

Instead, we use approximations of the PCA by NH-PCA on a finite subset of cells, the
methodology sketched in Sec. 3.2.6. Again, computing exactly the invariant measure is
impossible except for very small windows. But now the sampling algorithms become effective.

Let P be the majority-flip PCA. Set Dn = {−n, . . . , n}, and let ν be the uniform measure
on {0, 1}. Consider the NH-PCA P (ν,Dn). Let µn be the unique invariant measure of
P (ν,Dn). We are interested in the quantity

cn = µn{x ∈ {0, 1}Dn | x0 = x1 = 0}+ µn{x ∈ {0, 1}Dn | x0 = x1 = 1} .

Indeed, by application of Lemma 3.1, if lim supn cn > 0, then there exists a non-trivial
invariant measure for the majority-flip PCA on Z.
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Now the NH-EPCA is ergodic, so the sampling algorithms of Sec. 3.2 can be used. We
were able to run the algorithms up to a window size of n = 1024 before running into a
timeout. The experimental results appear in Fig. 3.9, with a logarithmic scale. We ran the
sampling algorithms 104 times. We show on the figure the confidence intervals calculated
with Wilson score test at 95%.

It is reasonable to believe that the top two curves in Fig. 3.9 do not converge to 0 while
the bottom three converge to 0. This would imply that at least for α ≥ 0.45, the PCA
has several invariant measures, which is consistent with the visual impression of space-time
diagrams.
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Chapter 4

Probabilistic cellular automata
having Bernoulli or Markov
invariant measures and random
fields with i.i.d. directions

Beauty, the world seemed to say. And as if to prove it (scientifically) wherever
he looked at the houses, at the railings, at the antelopes stretching over the palings,
beauty sprang instantly. To watch a leaf quivering in the rush of air was an exquisite
joy.

– Virginia Woolf, Mrs. Dalloway
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Let us consider the simplest model of one-dimensional probabilistic cellular automata
(PCA). The set of cells is Z, the alphabet is A = {0, 1}, and the neighbourhood is N = {0, 1},
meaning that the new content of each cell is randomly chosen, independently of the others,
according to a distribution depending only on the content of the cell itself and of its right
neighbour.

There are necessary and sufficient conditions on the four parameters of such a PCA to
have a Bernoulli product invariant measure. We study the properties of the random field
given by the space-time diagram obtained when iterating the PCA starting from its Bernoulli
product invariant measure.

It is a non-trivial random field with very weak dependences and nice combinatorial prop-
erties. In particular, not only the horizontal lines but also the lines in any other direction
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−1 X0

0 X0
1 X0
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X1
−1 X1

0 X1
1 X1
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X2
−2 X2

−1 X2
0 X2

1

Figure 4.1: Space-time diagram.

consist of i.i.d. random variables. We study extensions of the results to Markov invariant
measures, and to PCA with larger alphabets and neighbourhoods.

Let us consider a PCA of neighbourhood N . For a time n ∈ N and a cell i ∈ Zd, the
dependence cone D(i, n) of (i, n) is the set of coordinates in the space-time diagram that are
likely to be influenced by the value of Xn

i . Precisely, we introduce the next definition.

Definition 4.1 (Dependence cone). The dependence cone of (i, n) ∈ Zd × N is the set

D(i, n) = {(k, t) ∈ Zd × N; t ≥ n and i = k + v1 + . . .+ vt−n for some v1, . . . , vt−n ∈ N t−n}.

The next lemma follows from the definition of a PCA.

Lemma 4.1. Let (i, n) belong to Zd × (N \ {0}) and let S be a subset of Zd × N such that
D(i, n) ∩ S = ∅. Then, Xn

i is independent of (Xm
j )(j,m)∈S conditionally to (Xn−1

i+v )v∈N .

4.1 Elementary PCA having Bernoulli invariant measures

For the time being, we assume that the neighbourhood is N = {0, 1} and that the alphabet
is A = {0, 1}.

When the neighbourhood is N = {0, 1}, for symmetry reasons, a natural choice can be
to represent the space-time diagram on a regular triangular lattice, as in Fig. 4.1.

For convenience, we introduce the notations: for x, y ∈ A,

θxy = θ1
xy = f(x, y)(1), θ0

xy = f(x, y)(0) = 1− θxy .

Observe that a PCA is completely characterised by the four parameters: θ00, θ01, θ10, and
θ11.

4.1.1 Computation of the image of a product measure by a PCA

The goal of this section is to give an explicit description of the measure µpF , where µp is the
Bernoulli product measure of parameter p, as a function of the parameters θ00, θ01, θ10, θ11.

Let us start with an observation. Consider (Yn)n∈Z ∼ µpF . Let q ∈ [0, 1] be such that
Y0 ∼ Bq (that is, q = (1−p)2θ00 +(1−p)p(θ01 +θ10)+p2θ11). Clearly, we have: (Y2n)n∈Z ∼ µq
and (Y2n+1)n∈Z ∼ µq. But the two i.i.d. sequences have a complex joint correlation structure.
It makes it non-elementary to describe the finite-dimensional marginals of µpF .
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Assume that the parameters satisfy:

(θ00, θ01), (θ10, θ11) 6∈ {(0, 0), (1, 1)} . (4.1)

For p ∈ (0, 1), α ∈ {0, 1}, define the function

gα : [0, 1] −→ (0, 1)
q 7−→ (1− q) (1− p) θα00 + (1− q) p θα01 + q (1− p) θα10 + q p θα11 .

(4.2)

Consider three random variables X0, X1, Y0 with (X0, X1) ∼ Bq⊗Bp and Y0 ∼ (Bq⊗Bp)f .
In words, gα(q) is the probability to have Y0 = α. With the condition (4.1), we have
gα(q) ∈ (0, 1) for all q ∈ [0, 1]. Observe also that g0(q) + g1(q) = 1.

X0 X1

Bq ⊗ Bp

Y0

For p ∈ (0, 1), α ∈ {0, 1}, we also define the function

hα : [0, 1] −→ [0, 1]
q 7−→

[
(1− q) p θα01 + q p θα11

]
gα(q)−1 .

(4.3)

Consider X0, X1, Y0 with (X0, X1) ∼ Bq ⊗ Bp and Y0 ∼ (Bq ⊗ Bp)f . In words, hα(q) is the
probability to have X1 = 1 conditionally to Y0 = α.

Proposition 4.1. Consider a PCA satisfying (4.1). Consider p ∈ (0, 1). For α0 · · ·αn−1 ∈
An, the probability of the cylinder [α0 · · ·αn−1] under µpF is given by:

µpF [α0 · · ·αn−1] = gα0(p)

n−1∏

i=1

gαi(hαi−1(hαi−2(. . . hα0(p) . . .))) .

By reversing the space-direction, we get an analogous proposition for a PCA satisfying
the symmetric condition: (θ00, θ10), (θ01, θ11) 6∈ {(0, 0), (1, 1)}.

Proof. Let us compute recursively the value µpF [α0 · · ·αn−1]. We set X = X0 and Y = X1.
Assuming that X ∼ µp, by definition,

µpF [α0] = P(Y0 = α0) = gα0(p).

We can decompose the probability µpF [α0α1] into

µpF [α0α1] = P(Y0 = α0, Y1 = α1) = P(Y1 = α1 | Y0 = α0) P(Y0 = α0).

By definition, the conditional law of X1 assuming that Y0 = α0 is given by Bhα0 (p). So the
law of (X1, X2) is Bhα0 (p) ⊗ Bp and we obtain

µpF [α0α1] = gα1(hα0(p)) gα0(p).

More generally, we have:

P(Y0 = α0 . . . Yk = αk) = P(Yk = αk | Y0 = α0 . . . Yk−1 = αk−1) P(Y0 = α0 . . . Yk−1 = αk−1).

By induction, the law of Xk knowing that Y0 = α0 . . . Yk−1 = αk−1 is Bhαk−1
(hαk−2

(...hα0 (p)...)).

The result follows.
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4.1.2 Conditions for a Bernoulli measure to be invariant

For x ∈ X , denote by δx the Dirac probability measure concentrated on the configuration x.
The probability measure µ1 = δ1Z is invariant for the PCA F if and only if θ11 = 1. Similarly,
µ0 = δ0Z is invariant for F if and only if θ00 = 0.

Using Prop. 4.1, we get a necessary and sufficient condition for µp, p ∈ (0, 1), to be an
invariant measure of F . The result is stated in Th. 4.1. The conditions we obtain were
already known [BGM69, DKT90], but our proof is new and simpler.

Theorem 4.1. The measure µp, p ∈ (0, 1), is an invariant measure of the PCA F of param-
eters θ00, θ01, θ10, θ11 if and only if one of the two following conditions is satisfied:

(i) (1− p) θ00 + p θ01 = (1− p) θ10 + p θ11 = p

(ii) (1− p) θ00 + p θ10 = (1− p) θ01 + p θ11 = p .

In particular, a PCA has a (non-trivial) Bernoulli product invariant measure if and only if
its parameters satisfy:

θ00 (1− θ11) = θ10 (1− θ01) or θ00 (1− θ11) = θ01 (1− θ10) . (4.4)

Proof. Let us assume that F satisfies condition (i) for some p ∈ (0, 1). Then, the function g1

is given by g1(q) = (1− q) p+ q p = p, and g0(q) = 1− g1(q) = 1− p. By Prop. 4.1, we have,

∀α = α0 · · ·αn−1 ∈ An, µpF [α] = (1− p)|α|0p|α|1 = µp[α] .

So µp is an invariant measure.
Now, assume that the PCA F satisfies condition (ii). Let us reverse the space direction,

that is, let us read the configurations from right to left. The same dynamic is now described
by a new PCA F̃ defined by the parameters θ̃00 = θ00, θ̃01 = θ10, θ̃10 = θ01, θ̃11 = θ11. So,
the new PCA satisfies condition (i). According to the above, we have µpF̃ = µp. Let us
reverse the space direction, once again. Since the Bernoulli product measure is unchanged,
we obtain µpF = µp.

Conversely, assume that µpF = µp. It follows from Prop. 4.1 that for any value of
the αi, we must have g1(hαn−1(hαn−2(. . . hα0(p) . . .))) = p. Since g1 is an affine func-
tion, there are only two possibilities: either g1 is the constant function equal to p; or
hαn−1(hαn−2(. . . hα0(p) . . .))) = p for all values of α0, . . . , αn−1 ∈ A.

In the first case, observe that

g1(q) = q [−(1− p) θ00 − p θ01 + (1− p) θ10 + p θ11] + (1− p) θ00 + p θ01 .

To get: ∀q ∈ [0, 1], g1(q) = p, we must have condition (i).
In the second case, we must have h0(p) = h1(p) = p and g1(p) = p. Using g0(p) = 1− p

and g1(p) = p, we get:

h0(p) =
[
(1− p) p (1− θ01) + p p (1− θ11)

]
(1− p)−1

h1(p) =
[
(1− p) p θ01 + p p θ11

]
p−1 = (1− p) θ01 + p θ11 .

The equality h1(p) = p provides the condition (1 − p) θ01 + p θ11 = p. Let us switch to the
equality h0(p) = p. We have:

h0(p) = p ⇐⇒ (1− p) (1− θ01) + p (1− θ11) = 1− p
⇐⇒ (1− p) θ01 + p θ11 = p .

So, we obtain condition (ii).
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To complete Th. 4.1, let us quote another result [Vas78]. We recall that a PCA has
positive rates if: ∀u ∈ AN , ∀a ∈ A, f(u)(a) > 0.

Proposition 4.2. Consider a positive-rate PCA F satisfying condition (i) or (ii), for some
p ∈ (0, 1). Then F is ergodic, that is, µp is the unique invariant measure of F and for all
initial measure µ, the sequence (µFn)n≥0 converges weakly to µp.

Assessing the ergodicity of a PCA is a difficult problem, which is algorithmically unde-
cidable in general, see Chap. 3. In this complicated landscape, Prop. 4.2 gives a restricted
setting in which ergodicity can be proved.

Observe that Prop. 4.2 is not true without the positive rates assumption. Consider for
instance the PCA defined by: θ00 = p/(1− p), θ01 = 0, θ10 = 0, θ11 = 1 for some p ∈ (0, 1/2].
It satisfies (i) and (ii), but it is not ergodic since δ1Z and µp are both invariant.

4.1.3 Transversal PCA

We assume that µp is invariant under the action of the PCA, and we focus on the correlation
structure of the space-time diagram obtained when the initial measure is µp. Observe that
this space-time diagram is both space-stationary and time-stationary. By time-stationarity,
the space-time diagram can be extended from Z×N to Z2. From now on, we work with this
extension.

Let (Xk,n)k,n∈Z×Z be a realisation of the stationary space-time diagram.

~u
~w

~v

It is convenient to define the three vectors ~u,~v, and ~w as in the figure above. The PCA
generating the space-time diagram is the PCA of direction ~u. In some cases, the space-time
diagram when rotated by an angle of 2π/3 (resp. −2π/3) still has the correlation structure
of a space-time diagram generated by a PCA of neighbourhood {0, 1}. In this case, we say
that, in the original space-time diagram, there is a transversal PCA of direction ~v (resp. ~w).

Proposition 4.3. Under condition (i), each line of angle π/3 of the space-time diagram is
distributed according to µp. Moreover, their correlations are the ones of a transversal PCA
of direction ~v and rates given by: ϑ00 = θ00, ϑ01 = θ10, ϑ10 = θ01, ϑ11 = θ11.

To prove Prop. 4.3, we need two preliminary lemmas. Set X = X0 and Y = X1, so that
we have in particular (X,Y ) ∼ (µp, µpF ).

X0 X1 X2 X3

Y0 Y1 Y2

Lemma 4.2. Under condition (i), the variables (Yk)k≥0 are independent of X0, that is, for
any n ≥ 0,

P
(
X0 = x0, (Yi)0≤i≤n = (yi)0≤i≤n

)
= µp[x0]

n∏

i=0

µp[yi] .
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Proof. The left-hand side can be decomposed into:

∑

x1···xn+1∈{0,1}n+1

P
(
(Xi)0≤i≤n+1 = (xi)0≤i≤n+1, (Yi)0≤i≤n = (yi)0≤i≤n

)
,

which can be expressed with the transition rates of the PCA as follows:

∑

x1···xn+1∈{0,1}n+1

µp[x0]

n∏

i=0

µp[xi+1]θyixixi+1

= µp[x0]
∑

x1∈{0,1}

µp[x1]θy0
x0x1

∑

x2∈{0,1}

µp[x2]θy1
x1x2

· · ·
∑

xn+1∈{0,1}

µp[xn+1]θynxnxn+1
.

Condition (i) can be rewritten as:

∀a, c ∈ {0, 1},
∑

b∈{0,1}

µp[b]θ
c
ab = µp[c] .

Using this, and simplifying from the right to the left, we obtain: µp[x0]
∏n
i=0 µp[yi].

Lemma 4.3. Under condition (i), for any n ≥ 0,

P(X0 = x0, X1 = x1, (Yi)0≤i≤n = (yi)0≤i≤n) = µp[x0]µp[x1]θy0
x0x1

n∏

i=1

µp[yi] .

Proof. The proof is analogous. We decompose the left-hand side into:

∑

x2···xn+1∈{0,1}n
P((Xi)0≤i≤n+1 = (xi)0≤i≤n+1, (Yi)0≤i≤n = (yi)0≤i≤n),

which can be expressed with the transition rates of the PCA as follows:

∑

x2···xn+1∈{0,1}n
µp[x0]

n∏

i=0

µp[xi+1]θyixixi+1

= µp[x0]µp[x1]θy0
x0x1

∑

x2∈{0,1}

µp[x2]θy1
x1x2

. . .
∑

xn+1∈{0,1}

µp[xn+1]θynxnxn+1
.

Using (i) and simplifying from the right to the left, we get the result.

Proof of Prop. 4.3. To prove the first part of the proposition, it is sufficient to prove that the
sequence (Xk

0 )k∈Z is i.i.d. For a given n ∈ N and a sequence (αk)0≤k≤n, let us prove recursively
that P((Xn

0 )0≤k≤n = (αk)0≤k≤n) = µp[α0 · · ·αn]. For n = 0, the result is straightforward;
and for n = 1, it is a direct consequence of Lemma 4.2. For larger values of n, set A =
P((Xk

0 )0≤k≤n = (αk)0≤k≤n), we have:

A =
∑

y1···yn−1∈{0,1}n−1

P
(
(Xk

0 )0≤k≤n = (αk)0≤k≤n, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)
.

Since X0
0 = X0, X

1
0 = Y0, it can be rewritten as:

A =
∑

y1···yn−1∈{0,1}n−1

P
(
(Xk

0 )2≤k≤n = (αk)2≤k≤n | X0 = α0, Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)

× P
(
X0 = α0, Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)
.
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The law of (Xk
0 )2≤k≤n conditionally to (X0, (Yi)0≤i≤n−1) is equal to the law of (Xk

0 )2≤k≤n
conditionally to (Yi)0≤i≤n−1. Also, using Lemma 4.2, we have: P

(
X0 = α0, Y0 = α1,

(Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)
= µp[α0] P(Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1). Coupling these

two points, we get:

A =
∑

y1···yn−1∈{0,1}n−1

P
(
(Xk

0 )2≤k≤n = (αk)2≤k≤n | Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1

)

× µp[α0] P(Y0 = α1, (Yi)1≤i≤n−1 = (yi)1≤i≤n−1)

= µp[α0] P
(
(Xk

0 )1≤k≤n = (αk)1≤k≤n
)
.

By induction, we obtain the result.

X0
0 = X0

X1
0 = Y0

X2
0

X3
0

X4
0

X0
1 = X1

X1
1 = Y1

X2
1

X3
1

X2
1

Y2 Y3

The second part of the proposition consists of proving that

P
(
(Xk

1 )0≤k≤n = (βk)0≤k≤n | (Xk
0 )0≤k≤n+1 = (αk)0≤k≤n+1

)
=

n∏

k=0

ϑβkαk+1αk
. (4.5)

We prove the result recursively. For n = 0, set A = P(X1 = β0 | Y0 = α1, X0 = α0). We

want to prove that A = ϑβ0
α1α0 . Using the first part of the proposition, we have:

A = P(Y0 = α1 | X0 = α0, X1 = β0) P(X0 = α0, X1 = β0) P(X0 = α0, Y0 = α1)−1

= θα1
α0β0

µp[α0] µp[β0] µp[α0]−1 µp[α1]−1 = θα1
α0β0

µp[β0] µp[α1]−1 .

If α1 = β0 = u, we get A = θuα0u = ϑuuα0
. Assume that α1 6= β0. Condition (i) can be

rewritten as:

µp[β0] θα1
α0β0

+ µp[α1] θα1
α0α1

= µp[α1] . (4.6)

Dividing by µp[α1], we get:

A = θα1
α0β0

µp[β0] µp[α1]−1 = 1− θα1
α0α1

= θβ0
α0α1

= ϑβ0
α1α0

.

For larger n, it is convenient to prove the next equality, which is equivalent to (4.5):

P
(
(Xk

0 )0≤k≤n+1 = (αk)0≤k≤n+1, (X
k
1 )0≤k≤n = (βk)0≤k≤n

)
= µp[αn+1]

n∏

k=0

µp[αk]ϑ
βk
αk+1αk

.
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The left-hand side can be decomposed into:

∑

y2···yn∈{0,1}n−1

P
(
(Xk

0 )0≤k≤n+1 = (αk)0≤k≤n+1, (X
k
1 )0≤k≤n = (βk)0≤k≤n, (Yi)2≤i≤n = (yi)2≤i≤n

)
.

Let us decompose each term of the sum, conditioning by the values of X0, X1, Y0, and Y1.
We have:

P
(
(Xk

0 )2≤k≤n+1 = (αk)2≤k≤n+1, (X
k
1 )2≤k≤n = (βk)2≤k≤n | (X0, X1, Y0, Y1) = (α0, β0, α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
= P

(
(Xk

0 )2≤k≤n+1 = (αk)2≤k≤n+1, (X
k
1 )2≤k≤n = (βk)2≤k≤n | (Y0, Y1) = (α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
.

and using Lemma 4.3, and the equality µp[β0]θα1
α0β0

= µp[α1]ϑβ0
α1α0 (see (4.6)):

P
(
(X0, X1, Y0, Y1) = (α0, β0, α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)

= µp[α0]µp[β0]θα1
α0β0

P
(
Y1 = β1, (Yi)2≤i≤n = (yi)2≤i≤n

)

= µp[α0]µp[α1]ϑβ0
α1α0

P
(
Y1 = β1, (Yi)2≤i≤n = (yi)2≤i≤n

)

= µp[α0]ϑβ0
α1α0

P
(
(Y0, Y1) = (α1, β1), (Yi)2≤i≤n = (yi)2≤i≤n

)
.

Assembling the pieces together, we obtain:

P
(
(Xk

0 )0≤k≤n+1 = (αk)0≤k≤n+1, (X
k
1 )0≤k≤n = (βk)0≤k≤n

)

= µp[α0]ϑβ0
α1α0

P
(
(Xk

0 )1≤k≤n+1 = (αk)1≤k≤n+1, (X
k
1 )1≤k≤n = (βk)1≤k≤n

)
.

We conclude the proof by induction.

Lemma 4.4. Let F be a PCA of neighbourhood {0, . . . , `}. Assume that µpF = µp and
consider the stationary space-time diagram obtained for that invariant measure. Then for
any α > −1/`, the line Lα = {(k, n) ∈ Z × N | n = αk} is such that the random variables
(Xn

k )(k,n)∈Lα are i.i.d.

The lines described above are those which are outside the dependence cone of the PCA.

Proof. Let us show that any finite sequence of consecutive random variables on such a line
is i.i.d. We can assume without loss of generality that the first of these points is X0

0 . Then,
using the hypothesis on the slope, we obtain that the other random variables on that line are
all outside the dependence cone of X0

0 . Thus, the (n−1)-tuple they constitute is independent
of X0

0 . By induction, we get the result.

Corollary 4.1. Under condition (i), all the lines of the space-time diagram except possibly
those of angle 2π/3 consist of i.i.d. random variables.

Proof. The previous proposition claims that the lines of angle π/3 are i.i.d. Lemma 4.4
provides the result for the lines of angles in [0, π/3) ∪ (2π/3, π]. The angles in (π/3, 2π/3)
correspond to lines that are outside the dependence cones of the transversal PCA, so we
obtain the result by applying again Lemma 4.4 for the transversal PCA.

In the same way, one can prove the following.

Proposition 4.4. Under condition (ii), the lines of angle 2π/3 of the space-time diagram are
distributed according to µp and their correlations are those of a transversal PCA of direction
~w and rates given by ϑ00 = θ00, ϑ11 = θ11 and ϑ01 = θ10, ϑ10 = θ01.
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Corollary 4.2. Under condition (ii), all the lines of the space-time diagram except possibly
the ones of angle π/3 consist of i.i.d. random variables.

For a PCA satisfying (i) (resp. (ii)), the lines of angle 2π/3 (resp. π/3) are not i.i.d.,
except if the PCA also satisfies condition (ii) (resp. (i)). The distribution of the lines of
angle 2π/3 (resp. π/3) does not necessary have a Markov form either. For example, if
θ00 = θ01 = 1/2 and θ10 = 0, θ11 = 1 (condition (i) is satisfied with p = 1/2), one can check
that P(X0

0 = 0, X1
−1 = 0, X2

−2 = 0) = 19/64 which is different P(X0
0 = 0)P(X1

−1 = 0 | X0
0 =

0)P(X2
−2 = 0 | X1

−1 = 0) = (1/2)(3/4)2.

It is an open problem to know if under condition (i) (resp. (ii)), it is possible to give an
explicit description of the distribution of the lines of angle 2π/3 (resp. π/3).

4.2 Spatial properties of the space-time diagram

We now concentrate on PCA satisfying both conditions (i) and (ii) for some p ∈ (0, 1).
We consider the stationary space-time diagram associated with µp, and we still denote it by
(Xn

k )k,n∈Z.

4.2.1 A random field with i.i.d. directions

For a given p ∈ (0, 1), conditions (i) and (ii) are both satisfied if and only if:

∃s ∈
[2p− 1

p
,

p

1− p
]
, θ00 =

p(1− s)
1− p , θ01 = θ10 = s, θ11 = 1− (1− p)s

p
. (4.7)

Example 4.1. For any value of p ∈ (0, 1), the choice s = p is allowed. In that case, the
transition rates θij are all equal to p and the stationary random field is i.i.d., there is no
dependence in the space-time diagram.

Example 4.2. If p = 1/2, every choice of s ∈ [0, 1] is valid and the corresponding PCA has
the transition function f(x, y) = s δx+y + (1− s) δx+y+1, where the sums x+ y and x+ y+ 1
are taken modulo 2. We recover the PCA of Ex. 2.2.

Figure 4.2: An example of space-time diagram for p = 1/2 and s = 3/4 (Ex. 4.2).
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Example 4.3. For any value of p ∈ (0, 1/2], it is possible to set s = 0 and then, θ01 = θ10 =
0, θ11 = 1, and θ00 = p/(1− p). This PCA forbids the elementary triangles pointing up that
have exactly one vertex labeled by a 0.

Figure 4.3: An example of space-time diagram for p = 1/3 and s = 0 (Ex. 4.3).

The next proposition is a direct consequence of Corollaries 4.1 and 4.2.

Proposition 4.5. Consider a PCA satisfying (4.7). Every line of the stationary space-time
diagram consists of i.i.d. random variables. In particular, any two different variables are
independent.

4.2.2 Correlations in triangles

We have seen that all the lines of the space-time diagram are i.i.d. But the whole space-time
diagram is i.i.d. if and only if s = p. Indeed, if s 6= p, the random variable Xn+1

k is not
independent of (Xn

k , X
n
k+1); in words, the three variables of an elementary triangle pointing

up are correlated. Precisely, the triple (Xn
k , X

n
k+1, X

n+1
k ) consists of random variables which

are: (1) identically distributed; (2) pairwise independent; (3) globally dependent if s 6= p.
The “converse” holds.

Proposition 4.6. Let ν be a law on {0, 1}3 such that the three marginals on {0, 1}2 are i.i.d.
Assume that ν is non-degenerate (ν 6= δ000, ν 6= δ111). Then ν can be realised as the law of an
“elementary triangle pointing up” in the stationary space-time diagram of exactly one PCA
satisfying (4.7).

Proof. Consider (X0, X1, Y0) ∼ ν. Assume that the common law of X0, X1, and Y0 is Bp. By
the pairwise independence, we have:

P(X0 = 1, X1 = 0, Y0 = 0) = P(X1 = 0, Y0 = 0)− P(X0 = 0, X1 = 0, Y0 = 0)

= (1− p)2 − P(X0 = 0, X1 = 0, Y0 = 0) .

We obtain:

P(X0 = 1, X1 = 0, Y0 = 0) = P(X0 = 0, X1 = 1, Y0 = 0) = P(X0 = 0, X1 = 0, Y0 = 1)

P(X0 = 0, X1 = 1, Y0 = 1) = P(X0 = 1, X1 = 0, Y0 = 1) = P(X0 = 1, X1 = 1, Y0 = 0) .
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Set q0 = P(X0 = 1, X1 = 0, Y0 = 0) and q1 = P(X0 = 0, X1 = 1, Y0 = 1). We have:

P(X0 = 0, X1 = 0, Y0 = 0) = (1− p)2 − q0, P(X0 = 1, X1 = 1, Y0 = 1) = p2 − q1 .

Furthermore:

q0+q1 = P(X0 = 0, X1 = 0, Y0 = 1)+P(X0 = 1, X1 = 0, Y0 = 1) = P(X1 = 0, Y0 = 1) = p(1−p).

Using the above, and expressing everything as a function of p and q1, we get:

P(Y0 = 1 | X0 = 0, X1 = 0) = (p(1− p)− q1)/(1− p)2

P(Y0 = 1 | X0 = 0, X1 = 1) = q1/(p(1− p))
P(Y0 = 1 | X0 = 1, X1 = 0) = q1/(p(1− p))
P(Y0 = 1 | X0 = 1, X1 = 1) = 1− q1/p

2 .

By setting θij = P(Y0 = 1 | X0 = i,X1 = j) and s = q1/(p(1 − p)), we recover exactly
(4.7).

Lemma 4.5. Consider a PCA satisfying (4.7). The random field (X2n
2k )k,n∈Z corresponds to

the space-time diagram of a new PCA, having a neighbourhood of size 2, and satisfying (4.7)
for the same value of p.

Proof. Let us consider the random field (X2n
2k )k,n∈Z. Observe that all its random variables

are distributed according to Bp, and that each line consists of i.i.d. random variables.

We complete the proof of Lemma 4.5 by considering a realisation of the space-time dia-
gram. Let us assume that (X2n

i )i∈Z is a sequence of i.i.d. random variables, of distribution
Bp. Let (rmi )i∈Z,m>2n be i.i.d. random variables, independent from the X2n

i , and uniformly
distributed on [0, 1], such that Xm

i is a deterministic function of Xm−1
i , Xm−1

i+1 and rmi . Pre-
cisely, we define:

Xm
i =

{
0 if rmi < 1− θXm−1

i Xm−1
i+1

= f(Xm−1
i , Xm−1

i+1 )(0)

1 otherwise.

This provides a realisation of the space-time diagram (at least from time 2n, but by station-
arity, we can in fact also assume that the whole space-time diagram is built this way).

The random variable X2n+2
2k can be written as a deterministic function of the following

variables (see Fig. 4.4):

X2n
2k , X

2n
2k+1, X

2n
2k+2, r

2n+1
2k , r2n+1

2k+1 , r
2n+2
2k .

Conditionally on the variables (X2n
2k )a≤k≤b+1, the variables:

(X2n
2k+1)a≤k≤b, (r2n+1

i )2a≤i≤2b+1, (r2n+2
2i )a≤i≤b

are still independent, and for different values of k, the variables X2n+2
2k are deterministic

functions of different variables among the above ones. Thus, for any a < b, the variables
(X2n+2

2k )a≤k≤b are independent conditionally to the variables (X2n
2k )a≤k≤b+1.

Proposition 4.7. Consider a PCA satisfying (4.7) with s 6= p. The correlations between
three random variables that form an equilateral triangle pointing up decrease exponentially as
a function of the size of the triangle.
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X2n
2a X2n

2a+1 X2n
2a+2 X2n

2a+3 X2n
2a+4

X2n+1
2a

r2n+1
2a

X2n+1
2a+1

r2n+1
2a+1

X2n+1
2a+2

r2n+1
2a+2

X2n+1
2a+3

r2n+1
2a+3

X2n+2
2a

r2n+2
2a

X2n+2
2a+1 X2n+2

2a+2

r2n+2
2a+2

Figure 4.4: Illustration of the proof of Lemma 4.5.

Proof. Let us consider the random field (X2n
2k )k,n∈Z. By Lemma 4.5, this “extracted” random

field corresponds to the space-time diagram of a new PCA, having a neighbourhood of size

2 and satisfying (4.7) for the same value of p. To know its transition rates θ
(2)
ij = P(X2

0 = 1 |
X0

0 = i,X0
2 = j), it is enough to compute θ

(2)
10 = θ

(2)
01 . We denote this value by φ(s), since it

is a function of s = θ01 = θ10.
Summing over all possible values of X0

1 , X
1
0 , X

1
1 (we first consider the case X0

1 = 1 and
then the one X0

1 = 0), we get:

φ(s) = p [θ01θ11 θ11 + (1− θ01)θ11 θ01 + θ01(1− θ11) θ10 + (1− θ01)(1− θ11) θ00]

+(1− p) [θ00θ01 θ11 + (1− θ00)θ01 θ01 + θ00(1− θ01) θ10 + (1− θ00)(1− θ01) θ00].

Replacing the coefficients θij by their expression as a function of p and s and simplifying the
result, we obtain:

φ(s) = p+
(s− p)3

p(1− p) .

We proceed similarly for the random field (X2in
2ik

)k,n∈Z. The coefficient θ
(2i)
01 = P(X2i

0 =
1 | X0

0 = 0, X0
2i

= 1) is equal to φi(s), which satisfies:

φi(s)− p =
(s− p)3i

(p(1− p)) 3i−1
2

=
√
p(1− p)

( s− p√
p(1− p)

)3i

.

Similar computations can be performed for equilateral triangles pointing up of other sizes.
The decay of correlation for equilateral triangles pointing up is exponential in function of
their size.

The next lemma will allow us to characterise completely the triples of random variables
that are not independent.

Lemma 4.6. Consider a PCA satisfying (4.7). The variable X0
0 is independent of the se-

quence (Xn
k )k∈Z,n∈N\{0}.

Proof. Set X = X0 and Y = X1. It is sufficient to prove that X0 is independent of (Yk)k∈Z.
But (Yk)k≥0 and (Yk)k<0 are independent conditionally to X0, so that we can conclude with
Lemma 4.2 and its analogue for condition (ii).
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Proposition 4.8. Consider a PCA satisfying (4.7) with s 6= p. Three random variables
of the stationary space-time diagram are correlated if and only if they form an equilateral
triangle pointing up.

Proof. Three variables that form an equilateral triangle pointing up are correlated, see the
proof of Prop. 4.7. Let us now consider three variables (Z1, Z2, Z3) that do not constitute
such a triangle. Then, if we consider the smallest equilateral triangle pointing up that
contains them, there is an edge of that triangle that contains exactly one of these variables.
By rotation of angle 2π/3 or translation of the diagram, one can assume that this edge is
the horizontal one and that it contains the variable Z1, and not the variables Z2, Z3. Now,
using Lemma 4.6, we obtain that Z1 is independent of (Z2, Z3). But since Z2 and Z3 are
independent, the three variables (Z1, Z2, Z3) are independent.

There are subsets of four variables that do not contain equilateral triangles pointing up
and that are correlated. It is the case in general of (X0, X2, Y0, Y1). Let us consider for
instance the PCA of Ex. 4.3. The event (X0, X2, Y0, Y1) = (0, 1, 1, 1) has probability zero,
since whatever the value of X1, the space-time diagram would have an elementary triangle
pointing up with exactly one zero.

X0 = 0 X1 X2 = 1

Y0 = 1 Y1 = 1

4.2.3 Incremental construction of the random field

Let us show how to construct incrementally the stationary space-time diagram of a PCA
satisfying conditions (i) and (ii), using two elementary operations, based respectively on
Lemmas 4.1 and 4.6.

Consider a PCA satisfying (i) and (ii) for some p ∈ (0, 1). Let S ⊂ Z2 be the finite
set of points of the space-time diagram that has been constructed at some step. Initially
S = {(0, 0)} and X0

0 ∼ Bp.

• If (i, n), (i + 1, n) ∈ S, (i, n + 1) 6∈ S, and D(i, n + 1) ∩ S = ∅. Choose Xn+1
i knowing

(Xn
i , X

n
i+1) according to the law of the PCA.

If (i, n), (i, n+ 1) ∈ S, (i+ 1, n) 6∈ S, and if no point of the dependence cone of (i+ 1, n)
with respect to the transversal PCA of direction ~v belongs to S: choose Xn

i+1 knowing

(Xn+1
i , Xn

i ) according to the law of the transversal PCA of direction ~v.

If (i, n + 1), (i + 1, n) ∈ S, (i, n) 6∈ S, and if no point of the dependence cone of (i, n)
with respect to the transversal PCA of direction ~w belongs to S: choose Xn

i knowing
(Xn

i+1, X
n+1
i ) according to the law of the transversal PCA of direction ~w.

• If (i, n) 6∈ S, and if (j,m) ∈ S implies m > n: choose Xn
i according to Bp and

independently of the variables Xm
j , (j,m) ∈ S.

If (i, n) 6∈ S, and if (j,m) ∈ S implies j > i: choose Xn
i according to Bp and indepen-

dently of the variables Xm
j , (j,m) ∈ S.

If (i, n) 6∈ S, and if (j,m) ∈ S implies j + m < i + n: choose Xn
i according to Bp and

independently of the variables Xm
j , (j,m) ∈ S.
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1 2 3 4
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9

10

11
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13 14 15

Figure 4.5: Illustration of the incremental construction of the random field.

By applying the above rules in the order illustrated by the figure below, one can pro-
gressively build the stationary space-time diagram of the PCA. Indeed the rules enlarge S
in such a way that, at each step, the variables of S have the same distribution as the corre-
sponding finite-dimensional marginal of the stationary space-time diagram. This is proved
by Lemmas 4.1 and 4.6.

On Fig. 4.5, the labelling of the nodes corresponds to the step at which the corresponding
variable is computed (after the three variables of the grey triangle). An arrow pointing to
a variable means that it has been constructed according to the PCA of the direction of the
arrow (first rule). The nodes labelled by q are the ones which have been constructed by
independence (second rule).

In the next sections, we consider two types of extensions. First, PCA with an alphabet
and neighbourhood of size 2 but having a Markov invariant measure. Second, PCA having a
Bernoulli product invariant measure but with a general alphabet and neighbourhood.

4.3 Elementary PCA having Markov invariant measures

Markov measures are a natural extension of Benoulli product measures. In a nutshell, the
tools of Sec. 4.1 can be extended to find conditions for having a Markov invariant measure,
but the spatial properties presented in Sec. 4.2 do not remain.

Consider a, b ∈ (0, 1), and let us consider the Markov measure on {0, 1}Z of transition
matrix

Q =

(
1− a a
1− b b

)
,

it is the measure νQ defined on cylinders by:

∀x = xm · · ·xn, νQ[x] = πxm

n−1∏

i=m

Qxi,xi+1 ,

where π = (π0, π1) is such that πQ = π, π0 + π1 = 1, that is, π0 = (1 − b)/(1 − b + a) and
π1 = a/(1− b+ a).

The Markov measure νQ is space-stationary. If a = b, then νQ = µa, the Bernoulli product
measure of parameter a.
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Let us fix the PCA, that is, the parameters (θ00, θ01, θ10, θ11) and assume that (4.1) holds.
Let us fix the parameters a and b in (0, 1) (defining Q and π as above). We introduce the
analogues of the functions defined in (4.2) and (4.3).

For α ∈ {0, 1}, define the function:

gα : [0, 1] −→ (0, 1)
r 7−→ (1− r) (1− a) θα00 + (1− r) a θα01 + r (1− b) θα10 + r b θα11 .

(4.8)

In words, gα(r) is the probability that Y0 = α if the law of (X0, X1) is given by P(X0 =
x0, X1 = x1) = rx0 Qx0,x1 with r0 = 1 − r and r1 = r. With condition (4.1) on the
parameters, we have gα(r) ∈ (0, 1) for all r. Observe also that: g0(r) + g1(r) = 1.

For α ∈ {0, 1}, we also define the function:

hα : [0, 1] −→ [0, 1]
r 7−→

[
(1− r) a θα01 + r b θα11

]
gα(r)−1 .

(4.9)

In words, hα(r) is the probability to have X1 = 1 conditionally to Y0 = α if (X0, X1) is
distributed according to the above law.

Proposition 4.9. Consider the Markov measure νQ and the PCA F as above. For any
α0 · · ·αn−1 ∈ An, the probability of the cylinder [α0 · · ·αn] under νQF is given by:

νQF [α0 · · ·αn−1] = gα0(π1)
n−1∏

i=1

gαi(hαi−1(hαi−2(. . . hα0(π1) . . .))) .

Using Prop. 4.9, we obtain sufficient conditions for having a Markov invariant measure.
This provides a new proof of a result already mentioned in different works [BGM69, DKT90,
Ver76].

Theorem 4.2. Consider a PCA F such that: ∃i, j, θij ∈ (0, 1), that is, a PCA which is not
a deterministic CA. The PCA F has an invariant Markov measure associated to a, b ∈ (0, 1)
if we are in one of the three following cases:

1. The parameters satisfy:

(θ00, θ01, θ10, θ11) ∈ (0, 1)4, θ00θ11(1− θ01)(1− θ10) = θ01θ10(1− θ00)(1− θ11). (4.10)

In which case, a and b are the unique solutions in (0, 1) of the equations:

b(1− θ11) = (1− a)θ00, a(1− b)θ01θ10 = b(1− a)θ00θ11.

2. The parameters satisfy:

θ00 = 1, θ01 ∈ (0, 1], θ10 = 1, θ11 ∈ (0, 1)
or θ00 = 1, θ01 = 1, θ10 ∈ (0, 1], θ11 ∈ (0, 1).

In which case, a and b are the unique solutions in (0, 1) of the equations:

b(1− θ11) = (1− a), a(1− b)θ01θ10 = b(1− a)θ11.

3. The parameters satisfy:

θ00 ∈ (0, 1), θ01 = 0, θ10 ∈ [0, 1), θ11 = 0
or θ00 ∈ (0, 1), θ01 ∈ [0, 1), θ10 = 0, θ11 = 0.

In which case, a and b are the unique solutions in (0, 1) of the equations:

b = (1− a)θ00, a(1− b)(1− θ01)(1− θ10) = b(1− a)(1− θ00). (4.11)
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Let us point out that if a 6∈ {b, 1− b}, the condition (4.10) is also necessary.

Proof. We treat the case
[
(θ00, θ01) 6= (1, 1), (θ10, θ11) 6= (0, 0)

]
(observe that Prop. 4.9

holds). The case
[
(θ00, θ10) 6= (1, 1), (θ01, θ11) 6= (0, 0)

]
can be treated by reversing the

space-direction.
Let us assume that the following conditions are satisfied:

1. for α ∈ {0, 1}, gα(π1) = πα;

2. for α ∈ {0, 1}, there exists cα ∈ [0, 1] such that: ∀r, hα(r) = cα;

3. for α, β ∈ {0, 1}, gβ(cα) = Qα,β.

Then, by a direct application of Prop. 4.9, the measure νQ is invariant. When are these
conditions fulfilled?

For α = 1, condition 2 tells us that there exists c1 ∈ [0, 1] such that for any r ∈ [0, 1],

(1− r) a θ01 + r b θ11 = c1

(
(1− r) (1− a) θ00 + (1− r) a θ01 + r (1− b) θ10 + r b θ11

)
.

This is the case if and only if:

a θ01 = c1((1− a) θ00 + a θ01), b θ11 = c1((1− b) θ10 + b θ11) .

Thus, condition 2 for α = 1 is equivalent to:

a (1− b) θ01 θ10 = (1− a) b θ00 θ11 . (4.12)

In the same way, condition 2 for α = 0 is equivalent to:

a (1− b) (1− θ01) (1− θ10) = (1− a) b (1− θ00) (1− θ11) . (4.13)

Eliminating a and b in (4.12) and (4.13), we obtain the relation (4.10) for the parameters of
the PCA.

Conversely, let us assume that relation (4.10) holds. We will prove that there exist
a, b ∈ (0, 1) such that the three above conditions are satisfied.

First observe that (4.12) holds if and only if (4.13) holds. So, we have a first relation to
be satisfied by the parameters a, b ∈ (0, 1) which is (4.12). Under this relation, condition 2
is satisfied with:

c0 =
a (1− θ01)

(1− a) (1− θ00) + a (1− θ01)
=

b (1− θ11)

(1− b) (1− θ10) + b (1− θ11)
, (4.14)

and

c1 =
a θ01

(1− a) θ00 + a θ01
=

b θ11

(1− b) θ10 + b θ11
. (4.15)

Now consider condition 3 for α = β = 1. Simplifying using (4.15), we obtain:

g1(c1) = Q11 = b ⇐⇒ (1− a) θ00 = b (1− θ11) . (4.16)

Condition 3 for other values of α and β provides the same relation after simplification.
Let us show that if equations (4.12) and (4.16) are satisfied, then the PCA also fulfills

condition 1. Is is sufficient to prove that g1(π1) = π1. Expanding both sides of (4.13) and
simplifying using (4.12), we obtain:

a(1− b) (1− θ01 − θ10) = (1− a)b (1− θ00 − θ11) . (4.17)
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Applying the definition (4.8), we have:

g1(π1) =
1

1− b+ a

(
(1− b)(1− a) θ00 + (1− b)a θ01 + a(1− b) θ10 + ab θ11

)
.

Using (4.17), we can replace a(1− b)(θ01 + θ10) by a(1− b)− (1− a)b (1− θ00 − θ11). With
(4.16), we finally obtain g1(π1) = a/(1− b+ a) = π1.

Now, observe that the system:
{

(1− b) a θ01 θ10 = b (1− a) θ00 θ11

(1− a) θ00 = b (1− θ11)
(4.18)

has a unique solution (a, b) ∈ (0, 1)2. Let Q be the matrix associated with (a, b). Since the
three above conditions are satisfied, the Markov measure νQ is invariant by the PCA.

In the Markov case, unlike the Bernoulli case, there is no simple description of the law
of other lines in the stationary space-time diagram. Nevertheless, the stationary space-time
diagram has a different but still remarkable property: if θ01 = θ10, it is time-reversible,
meaning it has the same distribution if we reverse the direction of time [Vas78]. This is
closely related to the results of Sec. 1.4, and can be proved by considering the class of PCA
obtained in Ex. 1.1 when c3 = 1.

Bernoulli product measures are special cases of Markov measures. Therefore it is natural
to ask whether all the cases covered by Th. 4.1 are retrieved in (4.10). The answer is no.
Indeed, the measure νQ is a Bernoulli product measure if and only if a = b. Simplifying in
(4.18) and (4.10), we obtain:

[
θ00 = θ01, θ11 = θ10

]
or

[
θ00 = θ10, θ11 = θ01

]
.

The corresponding PCA have a neighbourhood of size 1. This is far from exhausting the
PCA with a Bernoulli product measure.

Finite set of cells. It is also interesting to draw a parallel between the result of Th. 4.2
and Prop. 4.6 of Bousquet-Mélou [BM98]. In this last article, the author studies PCA of
alphabet A = {0, 1} and neighbourhood N = {0, 1}, but defined on a finite ring of size
N (periodic boundary conditions: XN = X0), and proves that the invariant measure has a
Markov form if the parameters satisfy the same relation (4.10) as in the infinite case. The
expression of the measure is then given by:

P(X0 = x0, X1 = x1, . . . , XN−1 = xN−1) =
1

Z

N−1∏

i=0

Qxi,xi+1 ,

where Z is a normalising constant, and where the coefficients a and b defining the matrix Q
are the solution of the same system (4.18) as in the infinite case.

For a PCA satisfying condition (4.10), we have a Markov invariant measure both on a
finite ring and on Z. This is not the case for Bernoulli product measures: except when the
actual neighbourhood is of size 1, PCA satisfying the conditions of Th. 4.1 do not have a
product form invariant measure on finite rings.

Example 4.4. Consider for instance the PCA of transition function f(x, y) = (3/4) δx+y mod 2

+(1/4) δx+y+1 mod 2 (Ex. 4.2), on the ring of size 4. Its invariant measure µ is different from
the uniform measure:

µ(0000) = 573/8192, µ(0001) = 963/16384, µ(0011) = 33/512,

µ(0101) = 69/1024, µ(0111) = 957/16384, µ(1111) = 563/8192 .
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4.4 General alphabet and neighbourhood

In this section, the neighbourhood is N = {0, . . . , `} and the alphabet is A = {0, . . . , n}. For
p = (p0, . . . , pn) such that p0 + . . .+pn = 1, we still denote by µp the corresponding Bernoulli
product measure on AZ.

For convenience, we introduce the following notations: ∀x0, . . . , x` ∈ A, ∀k ∈ A,

θkx0···x` = f(x0, . . . , x`)(k) .

We define new functions gk and hk, which generalise the ones in (4.2) and (4.3). These
new functions gk and hk are not functions of a single variable, but of probability measures
on A`. Assume that:

∀k ∈ A, ∀x0 · · ·x`−1 ∈ A`, ∃i ∈ A, θkx0···x`−1i
> 0 . (4.19)

Let us define:

gk :M(A`) −→ (0, 1),

D 7−→ the probability that Y0 = k if (X0, . . . , X`) ∼ D ⊗ Bp ,

hk :M(A`) −→ M(A`),
D 7−→ the distribution of (X1, . . . , X`) conditionally to Y0 = k

if (X0, . . . , X`) ∼ D ⊗ Bp .

We have the following analogue of Prop. 4.1.

Proposition 4.10. Consider a PCA satisfying (4.19). Consider p = (pi)i∈A with pi > 0 for
all i ∈ A. For α0 · · ·αn−1 ∈ An, the probability of the cylinder [α0 · · ·αn−1] under µpF is
given by:

µpF [α0 · · ·αn−1] = gα0(B⊗`p )
n−1∏

i=1

gαi(hαi−1(hαi−2(. . . hα0(B⊗`p ) . . .))) .

By reversing the space-direction, we get an analogue of Prop. 4.10 under the symmetric
condition: ∀k ∈ A, ∀x0 · · ·x`−1 ∈ A`, ∃i ∈ A, θkix0···x`−1

> 0.

Applying Prop. 4.10, we obtain the following result, that had already appeared in a more
complicated setting [Vas78].

Theorem 4.3. Consider p = (pi)i∈A with pi > 0 for all i ∈ A. The measure µp is an
invariant measure of the PCA F if one of the two following conditions is satisfied:

∀x0, . . . , x`−1 ∈ A,∀k ∈ A,
∑

i∈A pi θ
k
x0···x`−1i

= pk, (4.20)

∀x0, . . . , x`−1 ∈ A,∀k ∈ A,
∑

i∈A pi θ
k
ix0···x`−1

= pk. (4.21)

Proof. Let us assume that F satisfies condition (4.20). Then, the function gk is constant.
Indeed,

gk(D) =
∑

i∈A,x0···x`−1∈A`
D(x0, . . . , x`−1) pi θ

k
x0···x`−1i

= pk .

By Prop. 4.10, we obtain that µpF = µp.
Now, like in the proof of Th. 4.1, we can reverse the space direction and define a new

PCA F̃ . The PCA F satisfies condition (4.21) if and only if the PCA F̃ satisfies condition
(4.20). Therefore, if F satisfies condition (4.21), then we have µpF̃ = µp, which implies in
turn that µpF = µp.
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As opposed to Th. 4.1, the conditions in Th. 4.3 are sufficient but not necessary. To
illustrate this fact, the simplest examples are provided by PCA that do not depend on all
the elements of their neighbourhood. Consider for instance the PCA of alphabet A = {0, 1}
and neighbourhood N = {0, 1, 2}, defined, for some a, b ∈ (0, 1), by: ∀u, v ∈ A, θ1

u0v = a,
θ1
u1v = b. This PCA has a Bernoulli invariant measure, but if a 6= b, it satisfies neither

condition (4.20), nor condition (4.21).
Let us state a related result, which extends Prop. 4.2, and completes Th. 4.3. (For the

relevance of this result, see the discussion following Prop. 4.2.)

Proposition 4.11 ([Vas78]). Consider a positive rates PCA F satisfying condition (4.20)
or (4.21), for some p = (pi)i∈A, pi > 0 for all i ∈ A. Then F is ergodic, that is, µp is the
unique invariant measure of F and for all initial measure µ, the sequence (µFn)n≥0 converges
weakly to µp.

Condition (4.20) implies that the variables X0, . . . , X`−1, Y0 are mutually independent,
since for any v ∈ {0, 1}` and α ∈ {0, 1}, we have P((X0, . . . , X`−1) = v, Y0 = α) =
µp[v]

∑
i∈A pi θ

α
vi = µp[v]µp[α]. Similarly, condition (4.21) implies that the variables X1, . . . ,

X`, Y0 are mutually independent.
The next lemma is a generalisation of Lemma 4.6.

Lemma 4.7. Under conditions (4.20) and (4.21), the variable X0
0 is independent of (Xn

k )k∈Z,n∈N\{0}.

Proof. Set X = X0 and Y = X1. Like in Lemma 4.6, it is sufficient to prove that X0 is
independent of Y = (Yk)k∈Z. Let us fix some a, b ∈ Z, (a < 0 < b), and prove that X0 is
independent of (Ya, Ya+1, . . . , Yb). We have:

S = P
(
X0 = x0, (Yi)a≤i≤b = (yi)a≤i≤b

)

=
∑

xi∈A
i∈{a,a+1,...,b+`}\{0}

P
(
(Xi)a≤i≤b+` = (xi)a≤i≤b+`, (Yi)a≤i≤b = (yi)a≤i≤b

)
.

Furthermore
P
(
(Xi)a≤i≤b+` = (xi)a≤i≤b+`, (Yi)a≤i≤b = (yi)a≤i≤b

)

= µp[x0]
−1∏

i=a

µp[xi] θ
yi
xi···xi+`

b+∏̀

j=`

µp[xj ] θ
yj−`
xj−`···xj

`−1∏

k=1

µp[xk] .

If we compute the sum S in the order: xa, . . . , x−1 first (simplifications using condition (4.20))
then xb+`, xb+`−1, . . . , x` (simplifications using condition (4.21)), and finally x1, . . . , x`−1, we
obtain eventually: S = µp[x0]

∏b
i=a µp[yi].

Corollary 4.3. If both conditions (4.20) and (4.21) are satisfied, then every line of the
stationary space-time diagram consists of i.i.d. random variables. In particular, any two
different random variables are independent.

If the neighbourhood is N = {0, 1}, under conditions (4.20) or (4.21), the spatial prop-
erties of Sec. 4.2 remain for a general alphabet (existence of transversal PCA, properties of
triangles,...). These two conditions can then be rewritten:

∀i ∈ A,∀k ∈ A, ∑
j∈A pj θ

k
ij = pk,

∀j ∈ A,∀k ∈ A, ∑
i∈A pi θ

k
ij = pk,

and the transversal PCA are defined respectively by the parameters

θ̃kij =
pk
pi
θijk and θ̃kij =

pk
pj
θjki.

For other neighbourhoods, there is no natural transversal PCA.



96 CHAPTER 4. PCA HAVING BERNOULLI OR MARKOV INVARIANT MEASURES



Chapter 5

Randomisation versus conservation
in one-dimensional CA

Tout cela tourbillonnant, se chevauchant en désordre... Mais il connâıt pour les
avoir mille fois observées ces infimes particules en mouvement. Il les a isolées
d’autres particules avec lesquelles elles avaient formé d’autres systèmes très différents,
il les connâıt bien. Maintenant elles montent, affleurent, elles forment sur le visage
de son père un fin dépôt, une mince couche lisse qui lui donne un aspect figé, glacé.

– Nathalie Sarraute, Le planétarium
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In this chapter, we focus on deterministic one-dimensional CA, and on the role played by
their Bernoulli invariant measures.

We study the necessary and sufficient conditions for CA to have Bernoulli product invari-
ant measures. These conditions can be described by a conservation law [KT12]. In particular,
it appears that the fact, for a CA, to admit all Bernoulli measures as invariant measures is
very restrictive: the CA fulfilling this property are exactly the ones that are both surjective
and state-conserving. It remains true if we consider PCA, since the only PCA that admits
every Bernoulli measures as invariant measures are deterministic ones.

We compare the known criterion on deterministic CA for having a Bernoulli invariant
measure with the ones obtained in the previous chapter for PCA. When specialising to de-
terministic CA the sufficient conditions for having a Bernoulli product measure developed
in Chap. 4, Sec. 4.4, a particular class of CA appears, namely permutative CA. The com-
binatorical structure of these CA gives them rich properties. We study their rigidity and
their randomisation capacities. Informally, a CA is rigid if its only invariant measure sat-
isfying some non-degeneracy condition (e.g. positive entropy) is the uniform measure. The
randomisation is the property, for a CA, to converge (either simply, or in Cesàro mean) to
the uniform measure from a large class of initial measures.

97
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5.1 Bernoulli invariant measures and conservation laws

Recall that a deterministic cellular automaton is a PCA having a transition function f such
that, for all x ∈ AN , the probability measure f(x) is concentrated on a single letter of the
alphabet. Thus, the transition function of a one-dimensional CA can be described by a
mapping f : AN −→ A, and the CA can be viewed as a deterministic mapping F : AZ −→
AZ.

5.1.1 CA having Bernoulli invariant measures

Let us fix the alphabet A. We recall that we denote by λ the uniform measure on AZ,
that is, the product measure of uniform measures on A. Next proposition gives a complete
characterisation of CA for which λ is an invariant measure.

Proposition 5.1 ([Hed69]). Let F be a cellular automaton. We have:

F is surjective ⇐⇒ λF = λ .

Let us present a recent result which refines Prop. 5.1. Given a finite and non-empty word
u ∈ A+, let uZ = · · ·uuu · · · ∈ AZ be a periodic bi-infinite word of period u (the starting
position is indifferent). If F : AZ −→ AZ is a CA, then F (uZ) = vZ for some word v with
|v| = |u|. For simplicity, we write v = F (u).

Theorem 5.1 ([KT12]). Consider a CA F on the alphabet A. The Bernoulli product measure
µp, p = (pi)i∈A, pi > 0 for all i ∈ A, is invariant for F if and only if:

(i) F is surjective and (ii) ∀u ∈ A+,
∑

i∈A
|u|i log(pi) =

∑

i∈A
|F (u)|i log(pi) .

This theorem is a conservation law. It claims that a CA preserves a Bernoulli measure
µp if and only if, when attributing a weight log pi to the letter i ∈ A, the total weight

∑

i∈A
|u|i log(pi)

of the periodic configuration uZ is preserved by the CA.

If a CA has an invariant Bernoulli product measure µp (with pi > 0 for all i ∈ A), then
it is surjective, so that by Th. 5.1, the uniform measure is also invariant.

5.1.2 PCA having all Bernoulli measures as invariant measures

Definition 5.1. A cellular automaton F is state-conserving if:

∀u ∈ A+,∀i ∈ A, |u|i = |F (u)|i.

As a consequence of Th. 5.1, a surjective and state-conserving CA admits all Bernoulli
product measures µp as invariant measures. We also have a converse proposition.

Proposition 5.2. The two following properties are equivalent.

(i) F is a PCA such that for every Bernoulli measure µp, we have µpF = µp.

(ii) F is a surjective and state-conserving CA.



5.1. BERNOULLI INVARIANT MEASURES AND CONSERVATION LAWS 99

Proof. The implication: (ii) =⇒ (i) follows from Th. 5.1. Let us consider a PCA satisfying
(i), and consider two words u, v ∈ An (with n larger than the size of the neighbourhood) such
that on a finite ring of size n, after one iteration of the PCA, there is a positive probability
θu→v to reach v from u. On the line Z, for any k ∈ N, starting from the word uk+2, there is
a probability θku→v to obtain the word vk after one iteration.

. . . . . . v v v v . . . . . .

. . . u u u u u u . . .

Since µp is an invariant measure, we have µp[v
k] ≥ µp[u

k+2] · θku→v, that is µp[v]k ≥
µp[u]k+2 · θku→v. This is true for any k ∈ N. By raising to the power 1/k on each side, when
k tends toward infinity, we obtain µp(v) ≥ µp(u) · θu→v, that is:

µp[v]

µp[u]
≥ θu→v.

We want this inequality to be true for any value of p. But:

µp[v]

µp[u]
=

∏
i∈A p

|v|i
i∏

i∈A p
|u|i
i

=
∏

i∈A
p
|v|i−|u|i
i ,

so that if |u|i < |v|i for some i ∈ A, we obtain a contradiction for pi → 0, and if |u|i > |v|i,
for pi → 1.

So, for any u, v ∈ An, if there is a positive probability to go from u to v on the ring of
size n, then |u|i = |v|i for all i ∈ A. Let us assume that the PCA is not deterministic. Then,
there exists a value of the neighbourhood making possible a transition from some i ∈ A to
some j ∈ A or some k 6= j, both with positive probability. It means that if this value of
the neighbourhood appears on a finite ring, then there are at least two words with different
numbers of j that can be reached with a positive probability. They cannot have both the
same number of j as the initial configuration, so that we get a contradiction. Consequently,
the PCA is in fact a deterministic CA.

There are non-trivial examples of surjective and state-conserving CA. The following ex-
ample is suggested by Garćıa-Ramos [GR12].

Example 5.1. Let A = 100010000 and B = 100100000. These two blocks are non-
overlapping. We define a CA in the following way: if there are two consecutive blocks
of A or B, then the one at the right is changed into A if they are the same, and into B
if there are different; in all other cases the state of the cells are unchanged. This CA is
surjective and state-conserving.

A
↑

A A
B B

B
↑

A B
B A

We would like to know if there are surjective and state-conserving CA whose rules are
“less constrained” than the one of the CA described above. In order to give a precise meaning
of this, we introduce the following definition.

Definition 5.2. A configuration x ∈ X is an equicontinuity point of F if:

∀ε > 0,∃δ > 0, d(x, y) < δ =⇒ [∀n ∈ N, d(Fn(x), Fn(y)) < ε].

It is an equicontinuity point of F in the direction (p, q) ∈ Z×N\{0} if it is an equicontinuity
point of σpF q.
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The CA of Ex. 5.1 has equicontinuity points, for example all the points that do not
contain a block A or a block B, which is the case in particular of the point 0Z. From any
configuration close to such a point (for example, a configuration having about ten 0’s around
the origin), the cells located around the origin behave endlessly in a trivial way, and there is
no interaction between the left part and the right part of the initial configuration.

It is an open problem to know if any surjective and state-conserving CA has at least one
direction with equicontinuity points.

In our attempt to explore surjective and state-conserving CA, we have proved the follow-
ing proposition.

Proposition 5.3. Let F be a CA of alphabet A = {0, . . . , n} and of neighbourhood N =
{`, . . . , r − 1, r} for some ` < r, and set L = r − `. We have the following equivalence.

(i) F is a surjective and state-conserving CA.

(ii) For any word u ∈ As, and any k0, . . . , kn such that k0 + . . .+ kn = L there are exactly(
L

k0,...,kn

)
words of length s + L with a number |u|i + ki of i, for 0 ≤ i ≤ n, that are

mapped to u.

Proof. Let F be a surjective and state-conserving CA, and let u ∈ As. We have: µp[u] =∏
i∈A p

|u|i
i , and since all the Bernoulli measures are invariant by Prop. 5.2, it is also equal to:

µpF [u] =
∑

t0+...+tn=s+L

αt
∏

i∈A
ptii ,

where αt is the number of words v of length s+ L such that |v|i = ti for 0 ≤ i ≤ n, that are
mapped to u. Thus, for any probability vector p, we have:

∏

i∈A
p
|u|i
i =

∑

t0+...+tn=s+L

αt
∏

i∈A
ptii .

If we specialise this equality to the identity CA, we recover the following combinatorial
formula: ∏

i∈A
p
|u|i
i =

∑

k0+...+kn=L

(
L

k0, . . . , kn

) ∏

i∈A
p
|u|i+ki
i .

Since this is true for any probability vector p, we can identify the coefficients. Thus, αt =(
L

k0−|u|0,...,kn−|u|n
)

if k is such that ki ≥ |u|i for all 0 ≤ i ≤ n, and αt = 0 otherwise.
Equivalently, for any word u ∈ An, and any k0, . . . , kn such that k0 + . . .+ kn = L there are
exactly

(
L

k0,...,kn

)
words of length s + L with a number |u|i + ki of i, for 0 ≤ i ≤ n, that are

mapped to u.
Conversely, if (ii) is satisfied, then any Bernoulli measure µp is invariant, which implies (i).

5.1.3 Permutative CA

The results in Sec. 4.1, and 4.4 give conditions for a PCA to admit invariant Bernoulli
product measures. The above results, Sec. 5.1.1, give conditions for a CA to admit invariant
Bernoulli product measures. The natural question is whether we obtain the latter conditions
by specialising the former ones.

Definition 5.3. A CA of transition function f : AN −→ A, where the neighbourhood is of
the form N = {`, . . . , r − 1, r} for some ` < r, is left-permutative (resp. right-permutative)
if, for all w = w` · · ·wr−1 ∈ Ar−`, the mapping from A to A defined by: a 7−→ f(aw) (resp.
a 7−→ f(wa)), is bijective. A CA is permutative if it is either left or right-permutative. It is
bipermutative if it is both left and right-permutative.



5.1. BERNOULLI INVARIANT MEASURES AND CONSERVATION LAWS 101

Example 5.2. If the alphabet is A = Zn, and if a, b, c ∈ Zn, then the CA of local rule given
by f(x, y) = ax + by + c is called an affine CA. For a (resp. b) invertible in Zn, the CA is
left-permutative (resp. right-permutative).

Let F : AZ −→ AZ be a permutative CA. The existence of the bijections, see Def. 5.3, has
two direct consequences: (i) F is surjective; (ii) the uniform measure is invariant: λF = λ.
In fact, these last two properties are equivalent, by Prop. 5.1.

Recall that the conditions (4.20) or (4.21) of Th. 4.3, see below, are sufficient for the
Bernoulli product measure µp (with ∀k ∈ A, pk > 0) to be invariant for the PCA F .

∀x0, . . . , x`−1 ∈ A, ∀k ∈ A,
∑

i∈A pi θ
k
x0···x`−1i

= pk (4.20)

∀x0, . . . , x`−1 ∈ A, ∀k ∈ A,
∑

i∈A pi θ
k
ix0···x`−1

= pk (4.21)

Let us specialise these conditions to CA, that is, let us assume that all the coefficients
θkx0...x`−1i

are equal to 0 or 1.

Lemma 5.1. A cellular automaton satisfies condition (4.20) for some p = (pk)k∈A with
∀k ∈ A, pk > 0, resp. condition (4.21), if and only if it is right-permutative, resp. left-
permutative.

Proof. Consider a CA of transition function f satisfying condition (4.20) for some p = (pk)k∈A
with ∀k ∈ A, pk > 0. The coefficients θkx0···x`−1i

can only be equal to 0 or to 1, the CA being
deterministic. Let us fix x0, . . . , x`−1 ∈ A. For any k ∈ A, we have pk > 0, so that there
exists at least one letter i ∈ A for which θkx0···x`−1i

= 1. The mapping from A to A defined
by: a 7→ f(x0 · · ·x`−1a) is surjective and therefore bijective.

To summarise, we recover the permutative CA. On the other hand, the surjective but
non-permutative CA (like Ex. 5.1) are not captured by the sufficient conditions of Th. 4.3.

Let the neighbourhood be N = {0, 1} and consider a general alphabet A. For a left-
permutative CA (resp. right-permutative), the transversal CA, see Sec. 4.1.3 and also the
last paragraph of Sec. 4.4, is right-permutative (resp. left-permutative), and explicitly com-
putable. Moreover, it is well-defined even if the space-time diagram is not assumed to be
stationary. We recover here a folk result.

In the special caseN = {0, 1} andA = {0, 1}, one can check by hand that all the surjective
CA are permutative. So in this case, we recover all the surjective CA. This is consistent with
the fact that in this case, the conditions of Th. 4.3 are necessary and sufficient (see Th. 4.1). In
fact, Kari, Salo, and Törmä have proved in 2013 that when the neighbourhood is N = {0, 1}
and |A| is a prime number, all surjective CA are permutative [KST13].

Remark. Condition (4.20) can be interpreted as “being right-permutative in expectation”
for a PCA. And similarly, condition (4.21) amounts to “being left-permutative in expectation”.

There are permutative CA that have other Bernoulli invariant measures µp than the
uniform measure, but in that case, they admit a power of the shift as a non-trivial factor.
Precisely, we have the following result.

Proposition 5.4. Let F be a left-permutative CA of alphabet A = {0, . . . , n} and neighbour-
hood N = {`, . . . , r}, with L = r−`. For any word w ∈ AL, we denote by τw the permutation
of A such that for any a ∈ A, f(aw) = τw(a). Let p be a probability measure on A. We set
Si = {j ∈ A; pj = pi}.

If µpF = µp, then for any w ∈ AL, and any i ∈ A, τw(Si) = Si. In particular,

• if p is such that 0 < p0 < p1 < . . . < pn, it implies that F = σr.
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• if F is bipermutative, its only Bernoulli invariant measure of full-support is the uniform
measure.

Proof. If a Bernoulli measure µp of full support is invariant under F , then for any k ∈ A, we
have:

pk =
∑

w∈AL
pτ−1
w (k) pw1 . . . pwL .

Let us assume without loss of generality that 0 < p0 ≤ p1 ≤ . . . ≤ pn. Then,

p0 =
∑

w∈AL
pτ−1
w (0) pw1 . . . pwL

≥
∑

w∈AL
p0 pw1 . . . pwL = p0.

It follows that for any w ∈ AL, pτ−1
w (0) = p0. With the setting S0 = {k ∈ A ; pk = p0}, we

obtain that for any w ∈ AL, τw(S0) = S0. Consequently, if k 6∈ S0, τw(k) 6∈ S0. Iterating the
same argument, one can prove that for any k ∈ A, and any w ∈ AL, pτ−1

w (k) = pk. Thus, all
the permutations τw preserve the subsets of letters of A having the same weight under the
Bernoulli measure.

In particular, we obtain that if a Bernoulli measure with parameters 0 < p0 < p1 < . . . <
pn is an invariant measure of a left-permutative CA, then this CA is equal to σr.

Let us now assume that the CA is bipermutative. There cannot be a (non-empty) subset
T  A such that for any w ∈ AL, τw(T ) = T , since in that case, for any word v ∈ AL
beginning with a letter in T , and any a ∈ A, we would have f(va) ∈ T , which would be in
contradiction with the right-permutativity.

Example 5.3. We define below a permutative CA of alphabet A = {0, 1, 2, 3} and neigh-
bourhood N = {0, 1}. The table gives the value of f(x, y) for x, y ∈ A.

0 1 2 3

0 0 1 2 3
1 1 0 3 2
2 0 1 2 3
3 1 0 3 2

For any parameter s ∈ [0, 1/2], the Bernoulli measure µp of parameter p = (s, t, s, t) is an
invariant measure, where t is defined by t = 1/2− s.

5.2 Rigidity and randomisation

In Sec. 4.1.2, we have characterised PCA of alphabet A = {0, 1} and neighbourhood N =
{0, 1} having Bernoulli invariant measures. As mentioned in Prop. 4.2, if they have positive
rates, these PCA are ergodic. Surjective CA have the uniform Bernoulli measure as invariant
measure, but they are non-ergodic, since they also have other invariant measures. Neverthe-
less, under some conditions, one can prove a rigidity result, which consists in proving that
the only invariant measure satisfying some properties (so that the measures that are too
“degenerated” are excluded) is the uniform measure [Sab10]. One can also look at randomi-
sation results, that is, proving that from a large class of initial measures, the iterates of the
CA converge to the uniform measure.



5.2. RIGIDITY AND RANDOMISATION 103

5.2.1 A first rigidity result: mixing criterion

Let us consider the sum CA, defined on the alphabet A = Z2 by F (x)k = xk + xk+1. The
uniform Bernoulli measure λ = µ1/2 is an invariant measure of F , but F also has many
other invariant measures, such as the measure concentrated on the configuration . . . 000 . . .,
or measures stemming from different periodic orbits. We prove below a first rigidity result
for that CA. Let us mention that Miyamoto has also obtained close results with a different
approach [Miy79, Miy94].

We recall that a measure µ is a shift-mixing measure if for any cylinders [u] and [v],

µ([u] ∩ σ−n[v]) −→n→∞ µ[u]µ[v].

Proposition 5.5. Let us consider the CA F of alphabet A = Z2 defined by F (x)k = xk+xk+1,
and let µ be a shift-mixing measure with full support on AZ. If µ is an invariant measure of
F , then µ is equal to the uniform measure λ.

Proof. For n ∈ N, let us define the CA

Gn = F 2n .

It is known that for any n ∈ N, Gn satisfies the following scaling property:

∀x ∈ AZ, ∀k ∈ Z, Gn(x)k = xk + xk+2n . (5.1)

Let µ be a shift-mixing measure with full support on AZ, that is invariant under the
action of F . Then, for any n ∈ N, µ is an invariant measure of Gn. Let us fix some ` ≥ 1
and consider the cylinders of length `. Let w ∈ A` be such that µ[w] = minu∈A` µ[u], and
assume that there exists some w′ ∈ A` such that µ[w′] > µ[w]. We set ε = µ[w′]− µ[w] > 0.

Since µ is mixing, for any α > 0, there exists some n ∈ N such that for any u, v ∈ A`, we
have :

µ[u]µ[v]− µ([u] ∩ σ−2n [v]) <
α

2`
.

Using the scaling property (5.1), we obtain that for any u ∈ A`,

µ[u] = µGn[u] =
∑

v∈A`
µ([v] ∩ σ−2n([u− v]))

where u− v is the word of A` defined by (u− v)k = uk − vk.
In particular, we obtain :

µ[w] =
∑

v∈A`
µ([v] ∩ σ−2n [w − v])

≥
( ∑

v∈A`
µ[v]µ[w − v]− α

2`

)

=
( ∑

v∈A`,v 6=w−w′
µ[v]µ[w − v]

)
+ µ[w − w′]µ[w′]− α

≥
( ∑

v∈A`,v 6=w−w′
µ[v]µ[w]

)
+ µ[w − w′](µ[w] + ε)− α

= µ[w] + εµ[w − w′]− α.

Any choice of α < εµ[w −w′] gives a contradiction. Thus, the only invariant measure of full
support that is shift-mixing is the uniform measure.
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5.2.2 Entropy criteria

In this section, we will give criterion based on ergodicity and entropy that ensure that an
invariant measure µ of a CA F on AZ is the uniform measure λ. Since F commutes with the
shift σ, the ordered pair (F, σ) defines a N×Z action on AZ. We recall that a (F, σ)-invariant
probability measure µ is ergodic for the action (F, σ) if every Borel set invariant under F
and σ has µ-measure 0 or 1.

We denote by P` the partition corresponding to the |A|2`+1 cylinders of base {−`,−` +
1, . . . , `}. The refinement of two partitions P1 and P2 is the partition defined by:

P1 ∨ P2 = {A ∩B ;A ∈ P1 and B ∈ P2}.

Definition 5.4 (Entropy). Let P be a finite partition of AZ. The entropy, with respect to
µ, of the partition P is defined by:

Hµ(P) = −
∑

A∈P
µ(A) log(µ(A)).

The entropy, with respect to µ, of F : AZ → AZ can be defined by:

hµ(F ) = − lim
`→∞

lim
N→∞

1

N
Hµ

(N−1∨

n=0

F−n(P`)
)
.

This limit exists by subadditivity. We refer for example to the work of Walters [Wal82]
for a complete introduction to entropy.

Note that the entropy of the shift σ can also be written:

hµ(σ) = − lim
k→∞

1

k

∑

a0,...,ak∈A
µ[a0 . . . ak] logµ[a0 . . . ak].

Theorem 5.2 ([HMM03]). Let A = Zp with p prime, and let F be an affine CA on AZ, of
neighbourhood N = {0, 1} and local rule f(x, y) = ax+ by + c for some a, b ∈ Z∗p, c ∈ Zp. If
µ is a (F, σ)-invariant measure such that:

(i) µ is ergodic for σ,

(ii) hµ(F ) > 0,

then µ = λ.

Ergodicity with respect to σ is an extremly strong assumption, but the assumption of
ergodicity for the action (F, σ) is not sufficient to guarantee the result.

We will generalise the tools used to prove this theorem [HMM03] and prove a rigidity
result for CA of local function of the form F (x, y) = ρ(ax+by+c), where ρ is any permutation
of the alphabet A. Let S(A) be the group of permutations of A.

Theorem 5.3. Let A = Zn, and let F be a bipermutative CA on AZ of neighbourhood
N = {0, 1} and local rule f(x, y) = ρ(ax+ by+ c) for some a, b ∈ Z∗n, c ∈ Zn, and ρ ∈ S(A).
If µ is a (F, σ)-invariant measure such that:

(i) µ is ergodic for σ,

(ii) hµ(F ) > 0,

then hµ(F ) = log k, where k divides n. In particular, if n is a prime number, then hµ(F ) =
log n and µ = λ.
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To begin with, let us introduce some preliminary results.

We denote by B the Borel σ−algebra of AZ. We set B1 = F−1(B), and given a measure
µ ∈M(AZ), we define µx as its conditional measure with respect to B1 at point x. That is,
for A ∈ B, one has µx(A) = E(1A|B1)(x), and µ(·) =

∫
AZ µx(·)dµ(x).

For x ∈ AZ, we set F(x) = {y ∈ AZ ;F (y) = F (x)}. The set F(x) is the fiber of x.

Lemma 5.2. Let (AZ, F ) be a cellular automaton and let µ ∈M(AZ), one has:

1. if µ is σ-invariant then µxσ = µσ(x) ,

2. the support of the measure µx is supp(µx) = F(x).

Let us now assume that F is a bipermutative CA of neighbourhood N = {0, 1}. Since F
is bipermutative, for any x ∈ AZ and for any α ∈ A, there exists a unique element y ∈ F(x)
such that y0 = α. For ω ∈ S(A), we can thus define the operator:

Tω : AZ −→ AZ
x 7−→ y such that y ∈ F(x) and y0 = ω(x0).

For ω ∈ S(A), we also define:

φω(x) = µx(T−1
ω (x)) = µx({Tω−1(x)}).

In particular, we have φId(x) = µx({x}) and φω(x) = φId(Tω−1(x)). Finally, we set:

Eω = {x ∈ AZ ;φω(x) > 0}.

Proposition 5.6. Let µ be a (σ, F )-invariant measure, ergodic for σ and of positive entropy
for F . The following properties are satisfied:

1. φId ◦ σ = φId µ-a.e. ,

2. φId ◦ F = φId µ-a.e. ,

3. µ(EId) = 1 ,

4. for ω ∈ S(A), Tω−1(1Eωµ) is absolutely continuous with respect to µ, that is: if µ(A) =
0, then µ(Tω(A) ∩ Eω) = 0 ,

5. φω = φId µ-a.e. in Eω.

Proof. 1. Since µ is σ-invariant, we have µxσ = µσ(x). Consequently, φId is σ-invariant.

2. By Property 1 and the σ-ergodicity of µ, the function φId is equal µ-a.e. to some
constant c. Since µ is F -invariant, it follows that φId(F (x)) = c for µ-a.e. x. We thus
obtain φId(F (x)) = φId(x) = c for µ-a.e. x.

3. By Property 1 and the σ-ergodicity of µ, we have µ(EId) = 0 or µ(EId) = 1. More-
over, we know that hµ(F ) =

∫
AZ − lnφId(x)dµ(x) (entropy formula for bipermutative

CA [HMM03, Sec. 4.3]). Since hµ(F ) > 0, it follows that µ(EId) = 1.

4. We have µ(A) =
∫
AZ µx(A)dµ(x), so that if µ(A) = 0, then µx(A) = 0 µ-a.e. In

particular, for µ-a.e. x ∈ Tω(A), 0 = µx(A) ≥ µx(T−1
ω (x)) = φω(x), thus x 6∈ Eω.

5. By Property 2, φId(F (x)) = φId(x) for µ-a.e. x. Using Property 4, we obtain that for µ-
almost every x ∈ Eω, φId(F (Tω−1(x))) = φId(Tω−1(x)). And since F (Tω−1(x)) = F (x),
it comes φId(x) = φId(Tω−1(x)), that is, φω(x) = φId(x) for µ-a.e. x ∈ Eω.
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Proposition 5.7. Let ω ∈ S(A). If there exists d ∈ N such that Tω ◦ σd = σd ◦ Tω, then for
any ω′ ∈ S(A), we have: φω = φω′◦ω µ-a.e. in Eω′.

Proof. Let ν be some ergodic component of µ for σd. The measure νF is σd-invariant and
ergodic for σd, and it is absolutely continuous with respect to µF = µ. Thus, νF is an
ergodic component of µ for σd, and it is equal to νσj for some j ∈ {0, . . . , d − 1}, so that
νF d = νσjd = ν.

The function φω is σd-invariant, since φω(σd(x)) = φId(Tω−1(σd(x))) = φId(σd(Tω−1(x))),
and by Property 1 of Prop. 5.6, φId(σd(Tω−1(x))) = φId(Tω−1(x)) = φω(x) µ-a.e. Thus, for
each ergodic component ν of µ (for σd), φω is equal ν-a.e. to some constant cν,ω. And since
νF d = ν, we obtain that φω(F d(x)) = φω(x) = cν,ω ν-a.e. This is true for each ergodic
component of µ. Consequently, φω(F d(x)) = φω(x) µ-a.e.

Using Property 4 of Prop. 5.6, we obtain that for µ-a.e. x ∈ Eω′ , φω(F d(Tω′−1(x))) =
φω(Tω′−1(x)). Since F d(Tω′−1(x)) = F d(x), it follows that φω(F d(Tω′−1(x))) = φω(F d(x)) =
φω(x) µ-a.e. Finally, φω(Tω′−1(x)) = φω(x) for µ-a.e. x ∈ Eω′ , that is: φω = φω′◦ω µ-a.e. in
Eω′ .

Proof of Th. 5.3. For k ∈ Zn, let ωk ∈ S(A) be the permutation defined by ωk(x) = x + k.
For simplicity, we replace the notations Tωk , φωk , Eωk by Tk, φk, Ek respectively.

Set v = b−1a (by hypothesis, F is bipermutative and a, b are invertible in Zn) and let d
be such that v2d = 1. Observe that Tk ◦ σ2d = σ2d ◦ Tk, since two elements of the same fiber
can be represented as follows.

. . . x0 x1 x2 x3 . . . x2d . . .

. . . x0 + k x1 − kv x2 + kv2 x3 − kv3 . . . x2d + k . . .

Let µ be a (σ, F )-invariant measure, ergodic for σ and of positive entropy for F . We know
by Prop. 5.6 that µ(E0) = 1, and as we have seen in the proof of that proposition, there
exists a constant c such that φk(x) = c µ-a.e. in Ek.

By Prop. 5.7, for any i, k ∈ A, φk = φi+k µ-a.e. in Ei.
Let us notice that by definition,

∑n−1
j=0 φj(x) = 1. Let j be the smallest element of

{1, . . . , n} such that µ(Ej) > 0 (there exists such a j, since otherwise, we would have c = 1
and hµ(F ) = 0). Then in Ej , we have µ-a.s. : c = φ0 = φj = φ2j = φ3j = . . .. Moreover,
for values i that are not in the subgroup of Zn generated by j, we have µ-a.s. φi = 0,
since otherwise, we would get a contradiction with the definition of j. Consequently, c =
gcd(j, n)/n, and by the entropy formula, hµ(F ) = − log c. If n is prime, then the only
possibility is that gcd(j, n) = 1 and hµ(F ) = log n, so that µ = λ, meaning that µ is the
uniform measure.

5.2.3 Randomisation

We introduce the following definition.

Definition 5.5 (Randomisation). Let F be a CA on A and let M ⊂M(AZ). We say that:

• F randomises M if, for any µ ∈M , we have µFn → λ ;

• F randomises M in Cesàro mean if, for any µ ∈M , 1
n

∑n
k=0 µF

k → λ.

The Cesàro limits have been studied for the CA of algebraic origin [Lin84, MM98,
FMMN00]. In particular, it is proved that affine permutative CA randomise in Cesàro mean
the set of (non-degenerated) Bernoulli measures. Nevertheless, these CA do not randomise
Bernoulli measure (without Cesàro mean), because of their scaling properties. Numerical
evidence let us think that some CA of local function of the form f(x, y) = ρ(ax + by + c)
could randomise Bernoulli measure.
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Example 5.4. Let us set A = Z/4Z, and N = {0, 1} and compare the behaviour of the CA
F and G defined respectively by the local functions f(x, y) = x + y and g(x, y) = ρ(x + y)
where ρ is the transposition exchanging 2 and 3, that is, the permutation defined by ρ(0) = 0,
ρ(1) = 1, ρ(2) = 3, ρ(3) = 2.

We start at time t = 0 from the Bernoulli product measure of parameters given by the
vector (1/25, 2/25, 6/25, 16/25). In a single graphic, we represent the evolution for times
t ∈ {0...300} of the number of occurrences of each word with a given length (` = 1 on
Fig. 5.1, and then ` = 2, 3, 4 on Fig. 5.2). The scaling is such that for the uniform measure,
the value would be 1 for all the words.

For the first CA, we observe peaks at each power of 4. They are due to the fact that
F 4n(x)k = xk + xk+4n , which has for consequence that this CA cannot randomise. Such
peaks do not appear for the CA G. If the behaviour is the same for larger lengths, it means
that G randomises this Bernoulli measure.



108 CHAPTER 5. RANDOMISATION VS. CONSERVATION IN 1-DIMENSIONAL CA

f(x, y) = x+ y

g(x, y) = ρ(x+ y)

Figure 5.1: Comparison of the behaviours of the CA F and G of Ex. 5.4 for words of length
` = 1. Here, each curve represents a different letter of the alphabet A (simulations of Hellouin
de Menibus).
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f(x, y) = x+ y g(x, y) = ρ(x+ y)

` = 2

` = 3

` = 4

Figure 5.2: Comparison of the behaviours of the CA F and G of Ex. 5.4 for words of length
` = 2, 3, 4 (simulations of Hellouin de Menibus).
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Chapter 6

Density classification on infinite
lattices and trees

Und weit, weit her Trommelwirbel. Nun gibt es keinen Zweifel mehr, der Aufstand
sammelt sich. Ein paar Stunden noch, und die Entscheidung wird fallen. Erregt eilt
die Königin immer wieder ans Fenster, um zu lauschen, ob die drohenden Anzeichen
sich verstärken. Diese Nacht kennt keinen Schlaf. Endlich, um vier Uhr morgens
erhebt sich blutrot die Sonne aus dem wolkenlosen Himmel. Es wird ein heißer Tag
werden.

– Stefan Zweig, Marie-Antoinette
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Consider an infinite graph with nodes initially labeled by independent Bernoulli random
variables of parameter p. We address the density classification problem, that is, we want
to design a (probabilistic or deterministic) cellular automaton or a finite-range interacting
particle system that evolves on this graph and decides whether p is smaller or larger than
1/2. Precisely, the trajectories should converge to the uniform configuration with only 0’s if
p < 1/2, and only 1’s if p > 1/2. We present solutions to the problem on the regular grids
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of dimension d, for any d ≥ 2, and on the regular infinite trees. For the bi-infinite line, we
propose some candidates that we back up with numerical simulations.

6.1 The density classification problem

Consider a finite or a countably infinite set of cells, which are spatially arranged according to
a group structure G. The density classification problem consists in deciding, in a decentralised
way, if an initial configuration on G contains more 0’s or more 1’s. More precisely, the goal is
to design a deterministic or probabilistic dynamical system that evolves in the configuration
space {0, 1}G with a local and homogeneous updating rule and whose trajectories converge
to 0G or to 1G if the initial configuration contains more 0’s or more 1’s, respectively. To
attack the problem, two natural instantiations of dynamical systems are considered, one
with synchronous updates of the cells, and one with asynchronous updates. In the first
case, time is discrete, all cells are updated at each time step, and the model is known as a
Probabilistic Cellular Automaton (PCA) [DKT90]. A Cellular Automaton (CA) is a PCA in
which the updating rule is deterministic. In the second case, time is continuous, cells are
updated at random instants, at most one cell is updated at any given time, and the model is
known as a (finite range) Interacting Particle System (IPS) [Lig05].

The general spirit of the problem is that of distributed computing: gathering a global
information by exchanging only local information. The challenge is two-fold: first, it is
impossible to centralise the information (cells are indistinguishable); second, it is impossible
to use classical counting techniques (cells contain only binary information).

The density classification problem was originally introduced for synchronous models and
rings of finite size (G = Z/nZ) [Pac88]. After experimentally observing that finding good
rules to perform this task was difficult, it was shown that perfect classification with CA is
impossible, that is, there exists no given CA that solves the density classification problem
for all values of n [LB95]. However, this result did not stop the quest for the best – although
imperfect – models as nothing was known about how well CA could perform. The use of
PCA opened a new path [Fas02, SOS09] and it was shown that there exist PCA that can
classify with an arbitrary precision [Fat11, Fat13]. In the present paper, we complement in
Prop. 6.1 the known results by showing that there exists no PCA that perfectly solves the
density classification problem for all values of n.

The challenge is now to extend the research to infinite groups whose Cayley graphs are
lattices or regular trees. First, we need to specify the meaning of “having more 0’s or more
1’s” in this context. Consider a random configuration on {0, 1}G obtained by assigning
independently to each cell a value 1 with probability p and a value 0 with probability 1− p.
We say that a model “classifies the density” if the trajectories converge weakly to 1G for
p > 1/2, and to 0G for p < 1/2. A couple of conjectures and negative results exist in
the literature. Density classification on Zd is referred to by Cox and Durrett under the
name of “bifurcation” [CD91]. These two authors study variants of the famous voter model
IPS [Lig05, Ch. V] and they propose two instances that are conjectured to bifurcate.

The density classification question has also been addressed for the Glauber dynamics
associated to the Ising model at temperature 0, both for lattices and for trees [FSS02, How00,
KM11]. The Glauber dynamics defines an IPS or PCA having 0G and 1G as invariant
measures. Depending on the cases, there is either a proof that the Glauber dynamics does
not classify the density, or a conjecture that it does with a proof only for densities sufficiently
close to 0 or 1.

The density classification problem has been approached with different perspectives on
finite and infinite groups, as emphasized by the results collected above. For finite groups,
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the problem is studied per se, as a benchmark for understanding the power and limitations
of cellular automata as a computational model. The community involved is rather on the
computer science side. For infinite groups, the goal is to understand the dynamics of specific
models that are relevant in statistical mechanics. The community involved is rather on the
theoretical physics and probability theory side.

The aim of the present chapter is to investigate how to generalise the finite group approach
to the infinite group case.

We want to build models of PCA and IPS, as simple as possible, that correct random
noise in the initial configuration, even if the density of errors is close to 1/2. We consider the
groups Zd, whose Cayley graphs are lattices (Sec. 6.2), and the free groups, whose Cayley
graphs are infinite regular trees (Sec. 6.3). In all cases, except for Z, we obtain both PCA and
IPS models that classify the density. To the best of our knowledge, they constitute the first
known such examples. The case of Z is more complicated and still open. We provide some
potential candidates for density classification together with simulation experiments (Sec. 6.4).

6.1.1 The density classification problem on Zn
The density classification problem was originally stated as follows: find a finite neighbourhood
N ⊂ Z and a transition function f : AN → A such that for any integer n ≥ 1 and any
configuration x ∈ AZn , when applying the CA F of transition function f to x, the sequence
of iterates (F k(x))k≥0 reaches the fixed point 0 = 0n if |x|0 > |x|1 and the fixed point 1 = 1n

if |x|1 > |x|0. The problem can be extended to PCA by requiring the measure (δxF
t)t≥0 to

converge to δ0, resp. δ1. (Or equivalently, by requiring the space-time diagram to converge
almost surely to 0, resp. 1.)

Land and Belew have proved that there exists no CA that perfectly performs this density
classification task for all values of n [LB95]. We now prove that this negative result can be
extended to PCA. It provides at the same time a new proof for CA as a particular case.

Denote by δx the probability measure corresponding to a Dirac distribution centered on x.

Proposition 6.1. There exist no PCA or IPS that solves perfectly the density classification
problem on Zn, that is, for any integer n ≥ 1, and for any configuration x ∈ AZn, (δxF

t)t≥0

converges to δ0 if |x|0 > n/2 and to δ1 if |x|1 > n/2.

Proof. We carry out the proof for PCA. For IPS, the argument is similar and even simpler.
Let us assume that F is a PCA that solves perfectly the density classification problem on
Zn. Let N be the neighbourhood of F , and let ` be such that N ⊂ [−` + 1, ` − 1]. We will
prove that for any x ∈ AZn (with n ≥ 2`), the number of occurrences of 1’s after application
of F to x is almost surely equal to |x|1. Let us assume that it is not the case. Then, there
exist two words x and y having different numbers of 1’s, such that from the word x, there is
a positive probability to reach y in one step. Formally, this can be written:

∃x, y ∈ AZn , |x|1 6= |y|1, δxF (y) > 0 . (6.1)

Assume for instance that |y|1 > |x|1 (the case |y|1 < |x|1 is treated similarly). We first
assume that |x|1 = a > n/2. We will construct a configuration z of density smaller than 1/2,
from which there is a positive probability to reach a configuration w of density larger than
1/2. For integers k ≥ 2,m ≥ 2`, let us consider the configuration z = xk0m ∈ AZkn+m . We
have |z|1 = ka. Let ys = y`+1 . . . yn be the suffix of length n− ` of y, and let yp = y1 . . . yn−l.
be the prefix of length n− ` of y. By applying equation (6.1), it follows that:

∃u, v, u′, v′ ∈ A`, δzF (uysy
k−2ypvu

′0m−2`v′) > 0 .
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Set w = uysy
k−2ypvu

′0m−2`v′.

z =

k︷ ︸︸ ︷
x x . . . x
← kn →

m︷ ︸︸ ︷
0 0 . . . 0
← m →

w = u
`

ys
n−`

k−2︷ ︸︸ ︷
y y . . . y
← (k−2)n →

yp
n−`

v
`
u′
`

m−2`︷ ︸︸ ︷
0 0 . . . 0
← (m−2`) →

v′
`

We have |w|1 ≥ k|y|1 − 2` ≥ k(a+ 1)− 2`.

For large enough m, if we set k to be the largest integer such that k(a − n/2) < m/2
(implying that (k + 1)(a− n/2) ≥ m/2, so that ka ≥ (kn+m)/2 + n/2− a), we have:

|z|1 = ka <
kn+m

2
, |w|1 ≥ k(a+ 1)− 2` ≥ kn+m

2
+
n

2
− a+ k − 2` >

kn+m

2
,

the last inequality coming from the fact that for large enough m, k > a + 2`. So, with a
positive probability, we can reach a configuration with more ones than zeros starting from
a configuration with more zeros than ones. Since F classifies the density with probability
1, the new configuration can be considered as an initial condition that needs to be classified
and will thus almost surely evolve to the fixed point 1, that is, a bad classification will occur,
which contradicts our hypothesis.

The case |x|1 < n/2 can be handled by swapping the roles of 0 and 1.

We have proved that for any x ∈ AZn (with n ≥ `), the number of occurrences of ones
after application of F to x is almost surely equal to |x|1. This is in contradiction with the
fact that F classifies the density.

The proof can be adapted to larger dimensions and we obtain the following.

Proposition 6.2. For any d ≥ 1, there is no d-dimensional PCA or IPS such that for any
integers n1, . . . , nd ≥ 1, and for any configuration x ∈ AZn1×...×Znd , (δxF

t)t≥0 converges to
δ0 if |x|0 > (n1 . . . nd)/2 and to δ1 if |x|1 > (n1 . . . nd)/2.

6.1.2 The density classification problem on infinite groups

Let us define formally the density classification problem on infinite groups.

We denote by µp the Bernoulli measure of parameter p, that is, the product measure of
density p on X = AG. A realisation of µp is obtained by assigning independently to each
element of G a label 1 with probability p and a label 0 with probability 1 − p. Set 0 = 0G

and 1 = 1G.

The density classification problem consists in finding a PCA or an IPS F , such that:




p < 1/2 =⇒ µpF

t w−−−→
t→∞

δ0,

p > 1/2 =⇒ µpF
t w−−−→
t→∞

δ1.
(6.2)

The notation
w−→ stands for the weak convergence of measures. In our case, the inter-

pretation of this convergence is that for any finite subset K ⊂ G, the probability that all
the cells of K are labelled by 0 (resp. by 1) tends to 1 if p < 1/2 (resp. if p > 1/2). Or,
equivalently, that for any single cell, the probability that it is labelled by 0 (resp. by 1) tends
to 1 if p < 1/2 (resp. if p > 1/2).
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From subgroups to groups. Next result will be used several times.

Proposition 6.3. Let H be a subgroup of G, and let FH be a process (PCA or IPS) of
neighbourhood N and transition function f that classifies the density on AH . We denote by
FG the process on AG having the same neighbourhood N and the same transition function f .
Then, FG classifies the density on AG.

Proof. Since H is a subgroup, the group G is partitioned into a union of classes g1H, g2H, . . .
We have N ⊂ H, so that if an element g ∈ G is in some class giH, then for any v ∈ N , the
element g · v is also in giH. Since FH classifies the density, on each class giH, the process FG
satisfies equation (6.2). Thus for any cell of G, the probability that it is labelled by 0 (resp.
by 1) tends to 1 if p < 1/2 (resp. if p > 1/2).

6.2 Classifying the density on Zd, d ≥ 2

According to Prop. 6.3, given a process that classifies the density on Z2, we can design a
new process that classifies on Zd for d > 2, by considering Zd as a pile of Z2-layers, and by
classifying the density independently on each of these layers. It doesn’t mean that there are
no other ways to classify the density, for which the different layers would interact together,
but it gives at least one elementary way to classify the density of Zd, d > 1, if we know how
to do on Z2.

Below, we concentrate on Z2.

To classify the density on Z2, a first natural idea is to apply the majority rule on a cell
and its four direct neighbours. Unfortunately, this does not work, neither in the CA nor in
the IPS version. Indeed, a 2 × 2 square of four cells in state 1 (resp. 0) remains in state 1
(resp. 0) forever. For p ∈ (0, 1), monochromatic elementary squares of both colors appear
almost surely in the initial configuration which makes the convergence to 0 or 1 impossible.
We prove more generally that on Zd, the majority rule over a symmetric neighbourhood that
contains the cell itself has a finite stable pattern (Fig. 6.1 represents two examples on Z2).
Classification of the density is thus impossible. We recover the “forbidden symmetry” of
Pippenger [Pip94].

Lemma 6.1. Let us consider a set N = {e0, e1, . . . , en,−e1, . . . ,−en} of (2n + 1) different
elements of Zd, with e0 = (0, . . . , 0). If the cells of the set D = {∑i∈S ei|S ⊂ {0, . . . , n}} are
initially in the same state, then they remain in that same state when iterating the majority
CA or IPS of neighbourhood N .

Proof. Let us fix any subset S of {0, . . . , n}, and consider the cell c =
∑

i∈S ei. We want
to prove that c has at least n + 1 neighbours which belong to D. First the cell c is in
its own neighbourhood. For j ∈ S, the cell c − ej =

∑
i∈S\{j} ei belongs to D, and for

j ∈ {1, . . . , n} \ S, the cell c+ ej =
∑

i∈S∪{j} ei belongs to D. Therefore c has at least n+ 1
neighbours in D. If all the cells of D are in the same state, when applying the majority rule,
this state is preserved.

On Z2, another idea is to apply the majority rule on the four nearest neighbours (excluding
the cell itself) and to choose uniformly the new state of the cell in case of equality. In the
IPS setting, this process is known as the Glauber dynamics associated to the Ising model. It
has been conjectured to classify the density, but the result has been proved only for values
of p that are sufficiently close to 0 or 1 [FSS02].

To overcome the difficulty, we consider the majority CA but on the asymmetric neigh-
bourhood N = {(0, 0), (0, 1), (1, 0)}. This CA, known as Toom’s rule [DKT90, Too80], has
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Figure 6.1: Stable patterns obtained respectively for the von Neumann neighbourhood (the
cell and its four nearest neighbours) and the Moore neighbourhood (the cell and its eight
surrounding neighbours).

been introduced in connection with the positive rates problem, see Sec. 6.2.3. Here we prove
that Toom’s CA classifies the density on Z2. Our proof relies on the properties of the perco-
lation clusters on the triangular lattice [Gri99]. We then define an IPS inspired by this local
rule and prove with the same techniques that it also classifies the density.

6.2.1 A cellular automaton that classifies the density

Let us denote by maj : A3 → A, the majority function, so that

maj(x, y, z) =

{
0 if x+ y + z < 2

1 if x+ y + z ≥ 2
.

Theorem 6.1. The cellular automaton T : AZ2 → AZ2
defined by:

T (x)i,j = maj(xi,j , xi,j+1, xi+1,j)

for any x ∈ AZ2
, (i, j) ∈ Z2, classifies the density.

Proof. By symmetry, it is sufficient to prove that if p > 1/2, then (µpT n)n≥0 converges
weakly to δ1.

Let us consider the graph defined with Z2 as the set of sites (vertices) and {{(i, j), (i, j+
1)}, {(i, j), (i + 1, j)}, {(i + 1, j), (i, j + 1)}, (i, j) ∈ Z2} as the set of bonds (edges). This
graph is equivalent to a triangular lattice, on which our notion of connectivity is defined.
We recall that a 0-cluster is a subset of connected sites labelled by 0 which is maximal for
inclusion. The site percolation threshold on the triangular lattice is equal to 1/2 so that, for
p > 1/2, there exists almost surely no infinite 0-cluster [Gri99]. Thus, if S0 denotes the set
of sites labelled by 0, the set S0 consists almost surely of a countable union S0 = ∪k∈NSk of
finite 0-clusters. Moreover, the size of the 0-clusters decays exponentially: there exist some
constants κ and γ such that the probability for a given site to be part of a 0-cluster of size
larger than n is smaller than κe−γn [Gri99].

Let us describe how the 0-clusters are transformed by the action of the CA. For S ⊂ Z2,
let 1S be the configuration defined by (1S)x = 1 if x ∈ S and (1S)x = 0 otherwise. Let T (S)
be the subset S′ of Z2 such that T (1S) = 1S′ . By a simple symmetry argument, this last
equality is equivalent to T (1Z2\S) = 1Z2\S′ . We observe the following.

• The rule does not break up or connect different 0-clusters (proved by Gács [Gác90,
Fact 3.1]). More precisely, if S consists of the 0-clusters (Sk)k, then the components of
T (S) are the nonempty sets among (T (Sk))k.



6.2. CLASSIFYING THE DENSITY ON ZD, D ≥ 2 117

(a) t=0 (b) t=1

(c) t=2 (d) t=3

(e) t=5 (f) t=10

(g) t=20 (h) t=30

Figure 6.2: Simulation of Toom CA from a Bernoulli measure of parameter 0.45.
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• Any finite 0-cluster disappears in finite time: if S is a finite and connected subset
of Z2, then there exists an integer n ≥ 1 such that T n(S) = ∅. This is the eroder
property [DKT90].

• Let us consider a 0-cluster and a rectangle in which it is contained. Then the 0-cluster
always remains within this rectangle. More precisely, if R is a rectangle set, that is, a
set of the form {(x, y) ∈ Z2 | a1 ≤ x ≤ a2, b1 ≤ y ≤ b2}, and if S ⊂ R, then for all
n ≥ 1, T n(S) ⊂ R (the proof follows from T (S) ⊂ T (R) ⊂ R).

Let us now consider all the 0-clusters for which the minimal enveloping rectangle contains
the origin (0, 0). By the exponential decay of the size of the clusters, one can prove that the
number of such 0-clusters is almost surely finite. Indeed, the probability that the point of
coordinates (m,n) is a part of such a cluster is smaller than the probability for this point to
belong to a 0-cluster of size larger than max(|m|, |n|). And since

∑

(m,n)∈Z2

κe−γmax(|m|,|n|) < 4κ
∑

m∈N
(me−γm +

∑

n≥m
e−γn) <∞,

we can apply the Borel-Cantelli lemma to obtain the result. Let T0 be the maximum of the
time needed to erase these 0-clusters. The random variable T0 is almost surely finite, and
after T0 time steps, the site (0, 0) will always be labelled by a 1. As the argument can be
generalised to any site, it ends the proof.

We point out that Toom’s CA classifies the density despite having many different invariant
measures. For example:

• Any configuration x that can be decomposed into monochromatic North-East paths
(that is, xi,j = xi,j+1 or xi,j = xi+1,j for any i, j) is a fixed point and δx is an invariant
measure.

• Let y be the checkerboard configuration defined by yi,j = 0 if i+ j is even and yi,j = 1
otherwise, and let z be defined by zi,j = 1−yi,j . Since we have T (y) = z and T (z) = y,
the two configurations y and z form a periodic orbit and (δy + δz)/2 is an invariant
measure.

6.2.2 An interacting particle system that classifies the density

We now define an IPS for which we use the same steps as above to prove that it classifies the
density.

Note that the exact IPS analogue of Toom’s rule might classify the density but the above
proof does not carry over since, in some cases, different 0-clusters may merge. To overcome
the difficulty, we introduce a different IPS with a new neighbourhood of size 7: the cell itself
and the six cells that are connected to it in the triangular lattice defined in the previous
section.

For α ∈ A, set ᾱ = 1− α.

Theorem 6.2. Let us consider the following IPS: for a configuration x ∈ AZ2
, we update the

state of the cell (i, j) by applying the majority rule on the North-East-Centre neighbourhood,
except in the following cases (for which we keep the state unchanged):

1. xi,j = xi−1,j+1 = xi+1,j−1 = x̄i,j+1 = x̄i+1,j and (xi,j−1 = x̄i,j or xi−1,j = x̄i,j),

2. xi,j = xi−1,j+1 = xi,j−1 = x̄i,j+1 = x̄i+1,j = x̄i+1,j−1 and xi−1,j = x̄i,j,

3. xi,j = xi−1,j = xi+1,j−1 = x̄i,j+1 = x̄i+1,j = x̄i−1,j+1 and xi,j−1 = x̄i,j.
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Figure 6.3: Illustration of the definition of the IPS.

This IPS classifies the density.

The three cases for which we always keep the state unchanged are illustrated below for
xi,j = 1 (central cell). In the first case, we allow to flip the central cell if and only if the
two cells marked by a dashed circle are also labelled by 1. Otherwise, the updating could
connect two different 0-clusters and break up the 1-cluster to which the cell (i, j) belongs to.
The second and third cases are analogous.

The proof is similar to the one of Th. 6.1 but involves some additional technical points.

Proof. We assume as before that p > 1/2. Like the CA of the previous section, the new pro-
cess that we have defined never breaks up a cluster or connects different ones. Furthermore,
if we consider a 0-cluster and the smallest rectangle in which it is contained, we can check
again that the 0-cluster will never go beyond this rectangle. As before, we only need to prove
that any finite 0-cluster disappears almost surely in finite time to conclude the proof. We
consider a realisation of the trajectory of the IPS with initial density µp. We associate to
any finite 0-cluster C ⊂ Z2 the point v(C) = max{(i, j) ∈ C}, using the lexicographic order
on the coordinates (we set v(∅) = (−∞,−∞)). In other words, the point v(C) is the upmost
point of C among its rightmost points. Let us consider at time 0 some finite 0-cluster C0.
We denote by Ct the state of this cluster at time t.

Claim. The sequence v(Ct) is nonincreasing. Moreover, if t ≥ 0 is such that Ct 6= ∅,
then there exists almost surely a time t′ > t such that v(Ct′) < v(Ct).

Let us prove the claim. Let us denote by x ∈ AZ2
a configuration attained at some time

t, and let (i, j) = v(Ct). By definition of v(Ct), if a cell of coordinates (i+ 1, j′) is connected
to a cell of Ct, then xi+1,j′ = 1. Either we have also xi+1,j′+1 = 1 and the cell (i + 1, j′)
will not flip, or xi+1,j′+1 = 0, but in this case, since (i + 1, j′ + 1) does not belong to Ct,
xi,j′+1 = 1 and the cell of Ct to which is connected (i+1, j′) is necessarily (i, j′). So, xi,j′ = 0
and xi+1,j′−1 = 1, once again by definition of v(Ct). Depending on the value of xi+2,j′−1,
either rule 1 or rule 2 forbids the cell (i + 1, j′) to flip. In the same way, we can prove that
if a cell of coordinates (i, j′), j′ > j is connected to Ct, then it is not allowed to flip. This
proves that v(Ct) is nonincreasing.

In order to prove the second part of the claim, we need to show that the cell (i, j) will
almost surely be flipped in finite time. By definition of (i, j) = v(Ct), we know that xi,j+1 =
xi+1,j = xi+1,j−1 = 1. The cell (i, j) will thus be allowed to flip, except if xi−1,j+1 = xi,j−1 = 0
and xi−1,j = 1. But in that case, the cell (i− 1, j) will end up flipping, except if xi−1,j−1 =
xi−2,j+1 = 1, xi−2,j = 0, and so on. Let Wn = {(i−n, j), (i−1−n, j+1), (i−n, j−1)}. If for
each n, the cells of Wn are in the state (n mod 2), then none of the cells (i−n, j) is allowed
to flip (see Fig. 6.4.a). But recall now that the initial measure is µp. There exists almost
surely an integer n ≥ 0 such that the initial state of the cell (i− n, j) is not (n mod 2).

Let m(t) be the smallest integer n whose value at time t is not n mod 2. Then, one can
easily check that m(t) is non-increasing, and that it reaches 0 in finite time. Thus, the cell
(i, j) ends up flipping and we have proved the claim.
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Figure 6.4: Illustration of the proof of Th. 6.2.

The example of Fig. 6.4.b illustrates how the proof works. Here, no cell of the cluster Ct
is allowed to flip, but since the cells on the right and on the top of v(Ct) cannot flip either,
v(Ct) does not increase. The cell at the left of v(Ct) will end up flipping, and v(Ct) will then
be allowed to flip.

Since we know that a 0-cluster cannot go beyond its enveloping rectangle, a direct conse-
quence of the claim is that any 0-cluster disappears in finite time. This allows us to conclude
the proof in the same way as for the majority cellular automaton.

6.2.3 The positive rates problem in Z2

Let us mention a connected problem and result. By definition, a PCA or an IPS of local
function ϕ : A −→M(A) has positive rates if:

∀u ∈ AN , ∀a ∈ A, ϕ(u)(a) > 0 . (6.3)

The positive rates problem consists in finding a positive-rate model which is non-ergodic
(with several invariant measures). This is a natural question, also relevant in the context of
fault-tolerant models of computation, and which has been extensively studied.

In Z2, the positive rates problem is solved by a “perturbation” of Toom’s CA. In fact, this
was the motivation that led Toom to introduce the CA that bears his name. Let ϕ0 be the
local function of Toom’s CA, seen here as a function intoM(A), and define the positive-rate
PCA F with local function ϕ : AN −→M(A) given by:

∀u ∈ AN , ϕ(u) = (1− ε)ϕ0(u) + ε Unif , (6.4)

where ε ∈ (0, 1) and where Unif is the uniform probability distribution on A. The interpre-
tation is that the computations are done according to Toom’s rule, but, at each time and in
each cell, an error may occur with probability ε in which case the new cell value is chosen
uniformly. It is proved by Toom [DKT90, Too80] that for ε small enough, the positive-rate
PCA F has several invariant measures, with at least one close to “all 0”, and one close to
“all 1”.

Intuitively and roughly, this non-ergodicity result and the one in Th. 6.1 can be viewed as
being complementary, expressing the very strong “erasing” capacities of Toom’s CA. Density
classification amounts to erasing “errors” in the initial configuration (the symbols which are
in minority), and non-ergodicity amounts to almost-erasing “errors” occurring in the whole
space time diagram (the 1’s if we are close to “all 0”, or the 0’s if we are close to “all 1”).
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6.3 Classifying the density on regular trees

Consider the finitely presented group Tn = 〈a1, . . . , an | a2
i = 1〉. The Cayley graph of Tn is

the infinite n-regular tree. For n = 2k, we also consider the free group with k generators,
that is, T ′2k = 〈a1, . . . , ak | ·〉. The groups T2k and T ′2k are not isomorphic, but they have the
same Cayley graph.

6.3.1 Shortcomings of the nearest neighbour majority rules

For odd values of n, a natural candidate for classifying the density is to apply the majority
rule on the n neighbours of a cell. But it is proved that neither the CA (see the work of
Kanoria [KM11] for n = 3, 5, and 7) nor the IPS (see the work of Howard [How00] for n = 3)
classify the density.

For n = 4, a natural candidate would be to apply the majority on the four neighbours
and the cell itself. We now prove that it does not work either.

Proposition 6.4. Consider the group T ′4 = 〈a, b | ·〉. Consider the majority CA or IPS with
neighbourhood N = {1, a, b, a−1, b−1}. For p ∈ (1/3, 2/3), the trajectories do not converge
weakly to a uniform configuration.

Proof. If p ∈ (1/3, 2/3), then we claim that at time 0, there are almost surely infinite chains
of zeros and infinite chains of ones that are fixed. Let us choose some cell labelled by 1.
Consider the (finite or infinite) subtree of 1’s originating from this cell viewed as the root.
If we forget the root, the random tree is exactly a Galton-Watson process. The expected
number of children of a node is 3p and since 3p > 1, this Galton-Watson process survives
with positive probability. Consequently, there exists almost surely an infinite chain of 1’s at
time 0 somewhere in the tree. In the same way, since 3(1− p) > 0, there exists almost surely
an infinite chain of 0’s.

As for Z2, we get round the difficulty by keeping the majority rule but choosing a non-
symmetrical neighbourhood.

6.3.2 A rule that classifies the density on T ′4

In this section, we consider the free group T ′4 = 〈a, b|·〉, see Fig. 6.5 (a).

Theorem 6.3. The cellular automaton F : AT ′4 → AT ′4 defined by:

F (x)g = maj(xga, xgab, xgab−1)

for any x ∈ AT ′4 , g ∈ T ′4, classifies the density.

Proof. We consider a realisation of the trajectory of the CA with initial distribution µp. Let
us denote by Xn

g the random variable describing the state of the cell g at time n. Since
the process is homogeneous, it is sufficient to prove that Xn

1 converges almost surely to 0 if
p < 1/2 and to 1 if p > 1/2. Let us denote by h : [0, 1]→ [0, 1] the function that maps a given
p ∈ [0, 1] to the probability h(p) that maj(X,Y, Z) = 1 when X,Y, Z are three independent
Bernoulli random variables of parameter p. An easy computation provides h(p) = 3p2− 2p3,
and one can check that the sequence (hn(p))n≥0 converges to 0 if p < 1/2 and to 1 if p > 1/2.

We prove by induction on n ∈ N that for any k ∈ N, the family Ek(n) = {Xn
u1u2...uk

| u1,
u2, . . . , uk ∈ {a, ab, ab−1}} consists of independent Bernoulli random variables of parameter
hn(p). By definition of µp, the property is true at time n = 0. Let us assume that it is true
at some time n ≥ 0, and let us fix some k ≥ 0.
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Figure 6.5: The cellular automata described by Th. 6.3 and Th. 6.4.

Let u1, u2, . . . , uk and v1, v2, . . . , vk be two different sequences of elements of {a, ab, ab−1}.
We have:

Xn+1
u1u2...uk

= maj(Xn
u1u2...uka

, Xn
u1u2...ukab

, Xn
u1u2...ukab−1),

Xn+1
v1v2...vk

= maj(Xn
v1v2...vka

, Xn
v1v2...vkab

, Xn
v1v2...vkab−1).

Thus, two different elements of Ek(n + 1) can be written as the majority on two disjoint
triples of Ek+1(n). The fact that the triples are disjoint is a consequence of the fact that
{a, ab, ab−1} is a code: a given word g ∈ G written with the elementary patterns a, ab, ab−1

can be decomposed in only one way as a product of such patterns. By hypothesis, the family
Ek+1(n) is made of i.i.d. Bernoulli variables of parameter hn(p), so the variables of Ek(n+ 1)
are independent Bernoulli random variables of parameter hn+1(p). Consequently, the process
F classifies the density on T ′4.

Let us mention that from time n ≥ 1, the field (Xn
g )g∈G is not i.i.d. For example, X1

1 and
X1
ab−1a−1 are not independent since both of them depend on X0

a .

On T ′2k = 〈a1, . . . , ak|·〉, one can either apply Prop. 6.3 to obtain a cellular automa-
ton that classifies the density, or define a new CA by the following formula: F (x)g =
maj(xga1 , xga1a2 , xga1a

−1
2
, . . . , xga1ak , xga1a

−1
k

) and check that it also classifies the density.

It is also possible to adapt the above proof to show that the IPS with the same local rule
also classifies the density.

6.3.3 A rule that classifies the density on T3

We now consider the group T3 = 〈a, b, c | a2 = b2 = c2 = 1〉.

Theorem 6.4. The cellular automaton F : AT3 → AT3 defined by:

F (x)g = maj(xgab, xgac, xgacbc)

for any x ∈ AT3 , g ∈ T3, classifies the density.
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Proof. The proof is analogous to the previous case. We prove by induction on n ∈ N that
for any k ∈ N, that the family Ek(n) = {Xn

u1u2...uk
| u1, u2, . . . , uk ∈ {ab, ac, acbc}} consists

of independent Bernoulli random variables of parameter hn(p), the key point being that
{ab, ac, acbc} is a code.

Once again, as explained in Prop. 6.3, since we have a solution on T3, we obtain a CA that
classifies the density for any Tn, n ≥ 3, by applying exactly the same rule. The corresponding
IPS on Tn also classifies the density.

The positive rates problem in regular trees. The positive rates problem is defined
in Sec. 6.2.3. PCA solving the problem on regular trees appear in the literature [Daw77].
Here, we obtain new examples by considering the CA of Th. 6.3 or the one of Th. 6.4, and
by defining its “perturbation” as in equation (6.4). It is not difficult to prove that for ε small
enough, the resulting positive-rate PCA is non-ergodic.

Again, this non-ergodicity result complements the density classification result, both of
them reflecting strong erasing capacities of the CA (see the discussion at the end of Sec. 6.2.2).

6.4 Classifying the density on Z

The density classification problem on Z appears as much more difficult than the other cases.
We are not aware of any previous result in the literature (even partial), neither for (P)CA
nor for IPS.

Below we focus on the synchronous version of the classification problem. First, we show
that simple solutions do exist if we slightly relax the formulation of the problem (Sec. 6.4.1).
Then we go back to the original problem. We first present a couple of naive (P)CA and
show that they do not classify the density (Sec. 6.4.2). We then describe three models,
two CA and one PCA, that are conjectured to classify the density (Sec. 6.4.3). We provide
some preliminary analytical results (Sec. 6.4.4), as well as experimental investigations of the
conjecture by using numerical simulations (Sec. 6.4.5).

In the examples below, the traffic cellular automaton, rule 184 according to Wolfram’s
notation, plays a central role. It is the CA with neighbourhood N = {−1, 0, 1} and local
function traf defined by:

x, y, z 111 110 101 100 011 010 001 000

traf(x, y, z) 1 0 1 1 1 0 0 0

This CA can be seen as a simple model of traffic flow on a single lane: the cars are
represented by 1’s moving one step to the right if and only if there are no cars directly in
front of them. It is a density-preserving rule.

6.4.1 An exact solution with weakened conditions

On finite rings, several models have been proposed that solve relaxed variants of the density
classification problem. We concentrate on one of these models introduced by Kari and Le
Gloannec [KLG12]. The original setting is modified since the model operates on an extended
alphabet, and the criterium for convergence is also weakened. Modulo this relaxation, it
solves the problem on finite rings Zn. We show the same result on Z.
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Proposition 6.5. Consider the cellular automaton F on the alphabet B = A2, with neigh-
bourhood N = {−1, 0, 1}, and local function f = (f1, f2) defined by:

f1(x, y, z) = traf(x1, y1, z1) ; f2(x, y, z) =





0 if x1 = y1 = 0

1 if x1 = y1 = 1

y2 otherwise

(6.5)

The projections µpF
n(AZ × ·) converge to δ0 if p < 1/2 and to δ1 if p > 1/2.

Intuitively, the CA operates on two tapes: on the first tape, it simply performs the traffic
rule; on the second tape, what is recorded is the last occurrence of two consecutive zeros
or ones in the first tape. If p < 1/2, then, on the first tape, there is a convergence to
configurations which alternate between patterns of types 0k and (10)`. Consequently, on the
second tape, there is convergence to the configuration δ0. We formalise the argument below.

Proof. Let T : AZ → AZ be the traffic CA, see above. Following an idea of Belitsky and
Ferrari [BF05], we define the recoding ψ : AZ → {−1, 0, 1}Z by ψ(x)i = 1−xi−xi−1. Consider
(ψ ◦Tn(x))n≥0, the recodings of the trajectory of the CA originating from x ∈ {0, 1}Z. There
is a convenient alternative way to describe (ψ ◦Tn(x))n≥0. It corresponds to the trajectories
in the so-called Ballistic Annihilation model: 1 and −1 are interpreted as particles that we
call respectively positive and negative particles. Negative particles move one cell to the left
at each time step while positive particles move one cell to the right; and when two particles
of different types meet, they annihilate.

Consider the Ballistic Annihilation model with initial condition µpψ for p > 1/2. The
density of negative particles is p2, while the density of positive particles is (1− p)2. During
the evolution, the density of positive particles decreases to 0, while the density of negative
particles decreases to 2p − 1. In particular, the negative particles that will never disappear
have density 2p−1 [BF05]. We can track back the position at time 0 of the “eternal” negative
particles. Let X be the (random) position at initial time of the first eternal particle on the
right of cell 0. After time X, the column 0 in the space-time diagram contains only 0 or −1
values. This key point is illustrated in the figure below.

0 X

+1

+1

+1

−1

−1
−1

−1
−1

We now go back to the traffic CA with initial condition distributed according to µp
for p > 1/2 and concentrate on two consecutive columns of the space-time diagram. The
property tells us that after some almost surely finite time, the columns do not contain the
pattern 00.

For the CA defined by equation (6.5) with an initial condition distributed according to
a measure µ satisfying µ(· × AZ) = µp for p > 1/2, the above key point gets translated
as follows: in any given column of the space-time diagram, after some a.s. finite time, the
column contains only the letters (0, 1) or (1, 1). In particular, µpF

t(AZ×·) converges weakly
to δ1 if p > 1/2.

6.4.2 Models that do not classify the density on Z

The first natural idea is to consider the majority rule for some neighbourhood of odd size.
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Recall the situation in Z2: with a symmetric neighbourhood, classification is impossible
(Lemma 6.1); with a non-symmetric neighbourhood, classification is possible (Th. 6.1). In Z,
Lemma 6.1 still holds, so classification is impossible with a symmetric neighbourhood. We
now show that it remains impossible even with a non-symmetric neighbourhood.

Below, we denote by [x0 · · ·xn]k the cylinder of all configurations y ∈ AZ satisfying
yk+i = xi for 0 ≤ i ≤ n.

Lemma 6.2. Consider a cellular automaton F performing the majority rule over a neigh-
bourhood of odd size. Then there exists k, l such that F ([0k]0) ⊂ [0k]l and F ([1k]0) ⊂ [1k]l.
In particular, F does not classify the density.

Proof. Let the neighbourhood be N = {e0, · · · , e2n} with ei ∈ Z and e0 < e1 < · · · < e2n.
Assume for simplicity that en = 0 (the general case is treated similarly). Set k = e2n− e0 + 1
and consider x ∈ [0k]e0 . By definition, F (x)i = maj(xi+e0 , . . . , xi+e2n), and

if e0 ≤ i ≤ 0, F (x)i = maj(xi+e0 , . . . , xi+en−1 , 0, . . . , 0) = 0,

if 0 < i ≤ e2n, F (x)i = maj(0, . . . , 0, xi+en+1 , . . . , xi+e2n) = 0.

So we have F ([0k]e0) ⊂ [0k]e0 . Similarly F ([1k]e0) ⊂ [1k]e0 . For p ∈ (0, 1), under the
probability measure µp, an initial configuration will contain both patterns 0k and 1k with
probability 1. Therefore, the CA cannot classify the density.

Another natural idea consists in having a model in which the interfaces between monochro-
matic regions evolve like random walks, leading to an homogenisation of the configuration.
Let us show that a direct implementation of this idea does not work.

Consider the PCA with neighbourhood N = {−1, 1}, and local function ϕ(x, y) =
(1/2)δx + (1/2)δy. In words, at each time step, the value of a cell is updated to the value of
its left neighbour with probability 1/2 and to the value of its right neighbour with probabil-
ity 1/2. This is the synchronous version of the Glauber dynamics associated with the Ising
model at temperature 0. (In Z2, the analogous dynamics is conjectured to classify, see the
discussion in Sec. 6.2.)

More generally, consider the PCA F with neighbourhood N = {e1, . . . ek}, ei ∈ Z, pa-
rameters p1, . . . , pk ∈ (0, 1) such that

∑k
i=1 pi = 1, and local function

ϕ(xe1 , . . . , xek) = p1δxe1 + · · ·+ pkδxek .

Lemma 6.3. The PCA F does not classify the density.

Proof. Let (Un)n∈Z be a sequence of i.i.d. random variables valued in {e1, . . . , ek} with
common law: p1δe1 + · · · + pkδek . Let µ be a probability measure on AZ and consider
a sequence of random variables (Xn)n∈Z distributed according to µ, and independent of
(Un)n∈Z. Define Yn = Xn+Un for all n ∈ Z. By construction, the sequence (Yn)n∈Z is
distributed according to µF . Assume now that µ is shift-invariant. (The value of µ[x]k does
not depend on the position k and we denote it by µ[x].) We have

µF [1] = P{Y0 = 1} =

k∑

i=1

P{Y0 = 1, U0 = ei} =
k∑

i=1

P{Xei = 1, U0 = ei}

=
k∑

i=1

P{Xei = 1}P{U0 = ei} =
k∑

i=1

µ[1]pi = µ[1] .

So the density of 1 is preserved by the dynamics, and F does not classify the density. The
expected behaviour is that homogenisation occurs leading to: µpF

n w−−−→
n→∞

(1−p)δ0+pδ1.

The behaviour is thus the same as for the one-dimensional voter model IPS.
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6.4.3 Density classifier candidates on Z

We now propose three models, two CA (GKL and Kari-traffic) and one PCA (majority-
traffic), that are candidates to classify the density on Z.

All three of them perform well with respect to the density classification on finite rings.
Figures 6.6 and 6.7 illustrate this point with space-time diagrams for the ring Z/149Z.

All three of them have the eroder property: if the initial configuration contains only a
finite number of ones (resp. zeros), then it reaches 0 (resp. 1) in finite time (almost surely
for the PCA). Proofs have been given by Gonzaga de Sá and Maes [GdSM92] for GKL and
by Kari and Le Gloannec [KLG12] for Kari-traffic. For majority-traffic, α < 1/2, a proof
could be worked out by considering the interfaces between regions (all-black, all-white, and
checkerboard) as particles.

GKL cellular automaton. The Gács-Kurdyumov-Levin (GKL) cellular automaton [GKL78]
is the CA with neighbourhood N = {−3,−1, 0, 1, 3} defined by: for x ∈ AZ, i ∈ Z,

Gkl(x)i =

{
maj(xi, xi+1, xi+3) if xi = 1

maj(xi, xi−1, xi−3) if xi = 0.
(6.6)

Kari-traffic cellular automaton. The Kari-Le Gloannec traffic rule [KLG12], that we
shorten as Kari-traffic CA and denote by Kari, is the CA of neighbourhoodN = {−3,−2,−1,
0, 1, 2, 3} defined by: for x ∈ AZ,

Kari(x) = Φ ◦ Traf(x) ,

where Traf is the traffic CA, that is the global function associated with traf, and where Φ
is the CA defined by: for x ∈ AZ, i ∈ Z,

Φ(x)i =





0 if (xi−2, xi−1, xi, xi+1) = 0010

1 if (xi−1, xi, xi+1, xi+2) = 1011

xi otherwise.

(6.7)

The Kari-traffic rule is closely related to Kůrka’s modified version of GKL [Kůr03].

Both GKL and Kari-traffic are symmetric when swapping 0 and 1 and right and left
simultaneously.

Majority-traffic probabilistic cellular automaton. The majority-traffic PCA of pa-
rameter α ∈ (0, 1) is the PCA of neighbourhood N = {−1, 0, 1} and local function:

(x, y, z) 7→ α δmaj(x,y,z) + (1− α) δtraf(x,y,z).

In words, at each time step, we choose, independently for each cell, to apply the majority
rule with probability α and the traffic rule with probability 1− α (see Fig. 6.7).

The majority-traffic PCA has been introduced by Fatès [Fat11, Fat13], who has proved
the following: for any n ∈ N and any ε > 0, there exists a value αn,ε of the parameter such
that on Zn, the PCA converges to the right uniform configuration with probability greater
than 1− ε.

Conjecture. The GKL CA, the Kari-traffic CA, and the majority-traffic PCA with 0 <
α < αc (for some 0 < αc ≤ 1/2) classify the density.
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GKL, d < 1/2 GKL, d > 1/2

Kari, d < 1/2 Kari, d > 1/2

Figure 6.6: Two space-time diagrams of GKL (top) and Kari-traffic (bottom) on Z/149Z.
The density of 1 in the initial condition is 70/149 (left) and 77/149 (right).

Figure 6.7: Two space-time diagrams of the majority-traffic PCA for α = 0.1 on the ring
Z/149Z. Both diagrams have the same initial condition with a density of 1 equal to 70/149.
The right diagram corresponds to a rare event: evolution towards a configuration with only
1’s, starting from a majority of 0’s.
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6.4.4 Invariant Measures

Following ideas developed by Kůrka [Kůr03], we can give a precise description of the invariant
measures of the three above models.

Let x = (01)Z be the configuration defined by: ∀n ∈ Z, x2n = 0, x2n+1 = 1. The
configuration (10)Z is defined similarly.

Proposition 6.6. For the majority-traffic PCA and for the Kari-traffic CA, the extremal
invariant measures are δ0, δ1, and (δ(01)Z+δ(10)Z)/2. For GKL, on top of these three measures,
there exist extremal invariant measures of density p for any p ∈ [1/3, 2/3].

Proof. Majority-traffic. Let us consider the majority-traffic PCA P of parameter α ∈
(0, 1). Let µ be any shift-invariant measure. An exhaustive search shows that if at time 1,
we observe the cylinder [100]0 then there are only eight possible cylinders of size 5 at time
0, that are:

[01100]−1, [10000]−1, [10001]−1, [10010]−1,

[10100]−1, [11000]−1, [11001]−1, [11100]−1.

Since the measure µ is shift-invariant, the probability µ([x0 · · ·xn]k) does not depend on k
and we denote it by µ[x0 · · ·xn]. If we weight each of the above cylinder by the probability
to reach [100]0 from it, we obtain the following expression:

µP [100] = α(1− α)µ[01100] + (1− α)µ[10000] + (1− α)µ[10001] + (1− α)µ[10010]

+ αµ[10100] + α2µ[11000] + α2µ[11001] + α(1− α)µ[11100].

Gathering the terms with the same coefficient, we have:

µP [100] = (1− α)(µ[100]− µ[10011]) + αµ[10100] + α(1− α)µ[1100] + α2µ[1100]

= (1− α)(µ[100]− µ[10011]) + αµ[10100] + αµ[1100].

Some more rearrangements provide:

µP [100] = (1− α)(µ[100]− µ[10011]) + α(µ[100]− µ[00100])

= µ[100]− (1− α)µ[10011]− αµ[00100].

This proves that the sequence (µPn[100])n≥0 is non-increasing. From now on, let us assume
that µP = µ. Then, µ[10011] = µ[00100] = 0.

Let us consider the cylinder [10n0011] for some n ≥ 2. If we apply the majority rule
on each cell except on the second cell from the left, then after n iterations, we reach the
cylinder [10011]. Since this occurs with a positive probability, we obtain that for any n ≥
0, µ[10n0011] = 0. This provides: µ[0011] = µ[00011] = µ[000011] = . . . = µ[0n11] for any
n ≥ 2. Consequently, µ[0011] = 0. From a cylinder of the form [00(10)n11], if we choose
to apply the majority rule on each cell, then we reach the cylinder [0011] in n steps. Thus,
µ[00(10)n11] = 0 for any n ≥ 0. It follows that µ can be written as the sum µ = µ0 + µ1 of
two invariant measures, where µ0 charges only the subshift Σ0 and µ1 the subshift Σ1 with

Σ0 = {x ∈ AZ | ∀k ∈ Z, xkxk+1 6= 00}, Σ1 = {x ∈ AZ | ∀k ∈ Z, xkxk+1 6= 11} . (6.8)

Let us assume that µ[00] = 0 (which is the case for µ0). In the same way that we have
computed µP [100], we can compute µP [11], and we obtain:

µP [11] = αµ[0110] + αµ[1110] + αµ[1101] + µ[1011] + µ[0111] + µ[1111]

= αµ[110] + αµ[1101] + µ[11]− µ[0011]

= µ[11] + αµ[110] + αµ[1101].



6.4. CLASSIFYING THE DENSITY ON Z 129

By hypothesis, µP = µ, so that the last equality implies that µ[110] = 0.

In all cases, if µ is a shift-invariant measure such that µP = µ, then µ[00] = µ(0), µ[11] =
µ(1) and µ[01] = µ[10] = µ((01)Z) = µ((10)Z).

Kari-traffic. If at time 1, we observe the pattern 100 at position 0, then, at time 0, this
same pattern was present at position −1. This can be checked by systematic inspection. In
the same way, if, at time 1, we observe the pattern 110 at position 0, then, at time 0, this
same pattern was present at position 1.

Let µ be a shift-invariant measure such that µK = µ, where K = Kari. A consequence of
the above results on the patterns 100 and 110 is that: µK[1100] = 0 and µKn+1[110x100] = 0
for any n ≥ 0 and any x ∈ An. But since µK = µ, we obtain µ[110x100] = 0 for any word x.
Like for majority-traffic PCA, we can write µ = µ0 + µ1 where µ0 and µ1 are two invariant
measures defined on the subshifts Σ0 and Σ1, see equation (6.8).

Let us consider a configuration of Σ0, that is, without the pattern 00. By the traffic rule,
each 0 of the configuration will move one cell to the left. Then by rule Φ (see equation (6.7)),
if a 0 is at distance greater than 2 from the next 0 on its right, it is erased. The result follows.

GKL. Any word x ∈ AZ which is a concatenation of the patterns u = 001 and v = 011
is a fixed point of the GKL cellular automaton: if xn = 0, then either xn−1 = 0 or xn−3 = 0
so that F (x)n = 0 and if xn = 1, then either xn+1 = 1 or xn+3 = 1 so that F (x)n = 1. As a
consequence, GKL has extremal invariant measures of density p for any p ∈ [1/3, 2/3].

To summarise, majority-traffic and Kari-traffic have a simpler set of invariant measures.
It does not rule out GKL as a candidate for solving the density classification task, but rather
indicates that it could be easier to prove the result for majority-traffic or Kari-traffic.

The positive rates problem in Z. Recall that the positive rates problem is defined in
Sec. 6.2.3. On Z, it had been a long standing conjecture that all positive-rate PCA and IPS
are ergodic.

The GKL CA, see equation (6.6), was originally introduced as a candidate to solve
the positive rates problem, with the conjecture that its perturbed version may be non-
ergodic [GKL78]. It is still unknown if it is the case or not, although the belief seems
now to be that it is ergodic [GdSM92, Par97].

Nevertheless, the positive rates conjecture is today known to be false. Gács suggested a
counter-example in 1986 [Gác86], and published the full proof in 2001 [Gác01]. It is a very
complex counter-example, with an alphabet of cardinality at least 218 [Gác01, Gra01].

To summarise, in Z, there is no known model that classifies the density, and there is no
known “simple” model that solves the positive rates problem. This reflects the difficulty to
build a model in Z with strong erasing properties.

6.4.5 Experimental results

Let us recall the arguments backing up the conjecture of Sec. 6.4.3. First, the three models
have the eroder property. Second, they classify reasonably well on a finite ring.

To go further, we perform some numerical experimentations. Our approach is to test if
the proportion of good classification on a finite ring converges to one as the size of the ring
increases. Indeed, it is reasonable to believe that there is a relationship between this last
property and the ability to classify on Z.

More precisely, we proceed as follows. We fix a rule (GKL, Kari-traffic, or majority-traffic
for α = 0.1) and a parameter p ∈ (0, 1/2). We consider different rings of odd sizes ranging
from 101 to 2001. For each size, we perform 105 experiments, by choosing each time a new
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initial configuration according to the Bernoulli product measure µp, that is, we assign to each
cell the value 1 with a probability p and the value 0 with probability 1 − p. We record the
proportion of good classifications among the 105 experiments. We denote this proportion by
Q(n) where n is the ring size. Let d(x) be the proportion of 1 in the initial configuration
x distributed according to µp. We may have d(x) > 1/2, although E[d(x)] = p < 1/2. We
have a “good classification” for x if there is convergence to 0 when d(x) < 1/2 and to 1 when
d(x) > 1/2.

The results are reported in Fig. 6.8. For each rule, we consider five different values for the
parameter p, ranging from 0.45 to 0.49. For each rule and each value of the parameter, the
plot is consistent with the hypothesis that Q(n) converges to 1. However, when p approaches
1/2, the ring size n needed for Q(n) to attain a certain quality level increases dramatically.

On each of the plots, we observe an initial decrease of Q(n) followed by an increase for
n large. For p = 0.49, the point of inflexion becomes hardly visible. Our explanation is that
for small ring sizes, the dispersion of the actual density d(x) is higher and covers values far
from 1/2 for which the classification is easier.
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Figure 6.8: Experimental determination of the quality of classification Q(n) as a function of
ring size n. Cells are initialised with a probability p to be in state 1. Each point represents
an average computed on 100 000 experiments (simulations made by Fatès with his software
FiatLux).
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Random walks and measures of
maximal entropy
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Chapter 7

Random walks and
Markov-multiplicative measures

He walked with his shoulders very straight and kept his hands always stuffed down
into his pockets. His grey eyes seemed to take in everything around him, and in
his face there was still the look of peace that is seen most often in those who are
very wise or very sorrowful. He was always glad to stop with anyone who wished
his company. For after all he was only walking and going nowhere.

– Carson Mc Cullers, The Heart is a Lonely Hunter
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We study random walks on infinite groups (or monoids) of free product type. The asymp-
totic behaviour of these random walks is described by the harmonic measure, giving the di-
rection taken by the walk in its escape to infinity. Mairesse and Mathéus have proved that
this measure has a Markov-multiplicative structure, and have given an in-depth study of
the case of free product of groups [Mai05, MM07]. We give a general frame to describe the
parameters of this measure, through a system of equations involving generating functions of
weighted paths in each group. Our approach has some similarities with the work of Gilch,
and we recover some of his results [Gil07]. The specificity is that we exploit the special
combinatorial structure of the harmonic measure, known to be Markov-multiplicative.

7.1 Random walks on free products of groups

7.1.1 Free products of groups

Let G1, . . . , Gn be n countable groups, pairwise disjoint but possibly isomorphic.

135
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We denote by ε1, . . . , εn the neutral elements of G1, . . . , Gn and we set Σi = Gi \ {εi},
and Σ = ∪ni=1Σi.

Let us denote by G = G1 ∗ . . .∗Gn, the free product of G1, . . . , Gn. By definition, G is the
set of words on Σ, equiped with the operation ∗ of concatenation with possible simplification
within the groups Gi. Let us give a formal definition of this operation.

We denote by τ : Σ → {1, . . . , n} the application that maps an element α ∈ Σ to the
unique integer i ∈ {1, . . . , n} such that α ∈ Σi. We say that τ(α) is the type of the element
α. For α ∈ Σ, the set of successors of α is given by:

S(α) = {β ∈ Σ, τ(α) 6= τ(β)}.

We define the set of normal form words by:

L = {u1 . . . uk ∈ Σ∗ ; ∀i ∈ {1, . . . , k − 1}, ui+1 ∈ S(ui)}.

The set L is a particulat subshift of finite type on the alphabet Σ.
The free group G = G1 ∗ . . . ∗ Gn is the group with set of elements L, unit element ε

(empty word), and group law ∗ defined recursively by:

u1 . . . uk ∗ v1 . . . vl =





u1 . . . uk−1ukv1v2 . . . vl if τ(uk) 6= τ(v1)

u1 . . . uk−1(uk · v1)v2 . . . vl if τ(uk) = τ(v1), uk 6= v−1
1

u1 . . . uk−1 ∗ v2 . . . vl if uk = v−1
1

,

where in the second case, uk · v1 is the product in Gτ(uk) of uk and v1.
The length on an element g ∈ G is given by:

|g|Σ = min{k ∈ N ; g = u1 ∗ . . . ∗ uk, ui ∈ Σ}.

The empty word ε is the only element of length 0.

Example 7.1. Let G1 = Z/2Z = {1, a} and G2 = Z/3Z = {1, b, b−1}. We have Σ =
{a, b, b−1} and for example

ab−1aba ∗ ab = ab−1ab−1; aba ∗ b−1ab = abab−1ab; (ab−1ab)−1 = b−1aba.

Example 7.2. LetG1 = Z2 = 〈a, b|ab = ba〉 andG2 = Z = 〈c|−〉. We have Σ = {aibj ; (i, j) ∈
Z2 \ {(0, 0)}} ∪ {ck; k ∈ Z \ {0}}, and for example:

(a2b−3)c12(a−1) ∗ (a2b)c−2 = (a2b−3)c12(ab)c−2.

An element of Z2 ∗ Z can be represented by a heap of different pieces. Precisely, we
introduce six different types of pieces: the pieces of type a or a−1 (resp. b or b−1) have length
1 and can occupy a left (resp. right) position, and the pieces of type c or c−1 have length 2. If
a piece lands directly on top of a piece of inverse type, the two pieces annihilate, see Fig. 7.1.

7.1.2 Random walks and the harmonic measure

We keep the same notations as in the previous subsection. Let us consider a probability
distribution p = (pα)α∈Σ on Σ, such that for any i ∈ {1, . . . , n}, {α ∈ Σi ; pα > 0} generates
the group Gi. We consider the random walk (G, p) which consists, at each time-step, in
jumping from ω ∈ G to ωα ∈ G with probability pα. Precisely, let (xk)k≥0 be an i.i.d
sequence of random variables of distribution p. We set X0 = ε and

Xk+1 = Xk ∗ xk = x0 ∗ x1 ∗ . . . ∗ xk.
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Figure 7.1: Different heaps representing the same element ab−1 of Z2 ∗ Z.

Then, (Xk)k≥0 is a realisation of the random walk (G, p).

A random walk on the free product G corresponds to a particular random walk on the
Cayley graph of G. For instance, if we consider the free product of cyclic groups G =
Z/2Z ∗Z/3Z, as in Ex. 7.1, and set pb = pb−1 ∈ (0, 1/2), with pa = 1− 2pb, the walk consists
in choosing independently at each time step to move with probability pb along one of the
two edges of the triangle on which the walker stands, or to follow the edge going out of that
triangle with probability pa, see Fig. 7.2.

In the same way, for Ex. 7.2, if we set pa + pa−1 + pb + pb−1 + pc + pc−1 = 1, the random
walk can be interpreted in terms of random heaps: at each time step, one of the six pieces is
chosen according to the probability p and falls onto the heap.

Since, |u ∗ v|Σ ≤ |u|Σ + |v|Σ, Guivarc’h [Gui80] observed that a simple corollary of King-
man’s subbadditive ergordic theorem [Kin73] is the existence of a constant γ ≥ 0 such that
almost surely and in Lp, for all 1 ≤ p <∞,

lim
k→∞

|Xk|Σ
k

= γ.

The constant γ is called the drift . Intuitively, γ is the speed of escape to infinity of the walk.
In all the following, we assume that G is a non-trivial free product, different from Z/2Z ∗

Z/2Z. In that case, any random walk living on the whole group is transient and has a drift
γ that is strictly positive [Gui80, Woe00]. Moreover, we have the following theorem, which
is proved for example in the survey of Ledrappier [Led01].

A measure µ on L∞ is called p-stationary if it is invariant by left-multiplication by an
element of Σ distributed according to p. This can be written:

µ =
∑

α∈Σ

pα · (αµ),

where αµ is the measure obtained when left-multiplying by the letter α (with possible sim-
plification) a word distributed according to µ.

Theorem 7.1 ([Led01]). Let L∞ = {u1u2 . . . ∈ ΣN ;∀i ∈ N, ui+1 ∈ S(ui)}. There exists a
random variable X∞ valued in L∞, such that, almost surely,

lim
k→∞

Xk = X∞,

in the sense that the length of the common prefix of Xn and X∞ tends to infinity.
Furthermore, the law µ∞ of X∞ is stationary and it is the only p-stationary measure on

L∞. It is called the harmonic measure associated to the random walk (G, p).
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εa

b

b−1

Figure 7.2: Cayley graph of G = Z/2Z ∗ Z/3Z.

7.2 Description of the harmonic measure

7.2.1 Markov-multiplicative measures

To begin with, let us introduce the notion of Markov-multiplicative measure.

Definition 7.1. Let µ be a measure on ΣN. We say that µ is a Markov-multiplicative
measure, if there exists a probability measure x on Σ, such that for any u1 . . . uk ∈ L,

µ(u1 . . . ukΣ
N) =

x(u1) . . . x(uk)

x(S(u1)) . . . x(S(uk−1))
. (7.1)

A Markov-multiplicative measure is a Markov measure, given by the transition matrix P
of dimension Σ× Σ given by:

Pu,v =

{
x(v)/x(S(u)) if v ∈ S(u),

0 otherwise.

Observe that in general, we have xP 6= x, so that it is not stationary.

We want to describe the distribution µ∞, which gives the direction in which (Xk)k≥0 goes
to infinity. Th. 7.1 tells us that it amounts to finding a p-stationary measure for the process.
The following result reduces the search domain.

Proposition 7.1 ([Mai05]). The harmonic measure of a random walk on a free product of
groups is a Markov-multiplicative measure.
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7.2.2 Traffic equations

For k ∈ {1, . . . , n} and α ∈ Σk, let us define the generating function counting the weighted
paths of first visit to α from εk in the group Gk, that is:

fk(α, z) =
∑

`≥1
v1,...,v`∈Σk
v1...v`=α

vi...v` 6=εk (1≤i≤`)

pv1 . . . pv` z
`.

We also define: Fk(z) =
∑

α∈Σk
fk(α, z).

Let us set pk = pΣk =
∑

α∈Σk
pα.

Proposition 7.2. The harmonic measure of the random walk (G, p) is the Markov-multiplicative
measure associated to the distribution x on Σ given by:

x(α) =
1

1 + Fk(Bk)
fk(α,Bk),

where (B1, . . . , Bn) is the unique positive solution of the system given by the following equa-
tions, for 1 ≤ k ≤ n:

Fk(Bk)

1 + Fk(Bk)
=
Bk pk −Bk

(∑
i 6=k

Bi−1
(n−1)Bi

− (n−2)(Bk−1)
(n−1)Bk

)

1−Bk
(∑

i 6=k
Bi−1

(n−1)Bi
− (n−2)(Bk−1)

(n−1)Bk

) .

Proof. Let us consider a Markov-multiplicative measure µ, defined as in (7.1). Then the mea-
sure µ is p-stationary if and only if the distribution x satisfies the following traffic equations:
for any k ∈ {1, . . . , n} and any α ∈ Σk,

x(α) = pα x(S(α)) +
∑

u∈Σk\{α}

pu x(u−1α) +
∑

u∈S(α)

pu
x(u−1)x(α)

x(S(u−1))
.

= pα (1− x(Σk)) +
∑

u∈Σk\{α}

pu x(u−1α) +
∑

i 6=k

∑

u∈Σi

pu
x(u−1)x(α)

1− x(Σi)
.

For j ∈ {1, . . . , n}, let us set

Aj =
∑

u∈Σj

pu x(u−1), and Bj =
1

1−∑i 6=j
Ai

1−x(Σi)

.

It follows from the definition of Bj , that:

∑

i 6=j

Ai
1− x(Σi)

=
Bj − 1

Bj
,

so that:




0 1
1−x(Σ2)

1
1−x(Σ3) · · · 1

1−x(Σn)
1

1−x(Σ1) 0 1
1−x(Σ3) · · · 1

1−x(Σn)
...

. . .
1

1−x(Σ1)
1

1−x(Σ2) · · · 1
1−x(Σn−1) 0







A1

A2
...
An


 =




B1−1
B1
B2−1
B2
...

Bn−1
Bn


 .
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The left matrix can also be written:




0 1 1 · · · 1
1 0 1 · · · 1
...
1 1 · · · 1 0







1
1−x(Σ1) 0 0 · · · 0

0 1
1−x(Σ2) 0 · · · 0

...
0 0 · · · 0 1

1−x(Σn)



.

By inverting this product, we obtain:

Aj = (1− x(Σj))
(∑

i 6=j

Bi − 1

(n− 1)Bi
− (n− 2)(Bj − 1)

(n− 1)Bj

)
. (7.2)

For α ∈ Σk, the traffic equations can be rewritten:

x(α) = pα (1− x(Σk)) +
∑

u∈Σk\{α}

pu x(u−1α) +
∑

i 6=k

Ai
1− x(Σi)

x(α).

Thus,

x(α)
(

1−
∑

i 6=k

Ai
1− x(Σi)

)
= pα (1− x(Σk)) +

∑

u∈Σk\{α}

pu x(u−1α).

It follows that:
x(α) = Bk pα(1− x(Σk)) +Bk

∑

u∈Σk\{α}

pu x(u−1α). (7.3)

Let us recall the notation pk = pΣk =
∑

α∈Σk
pα. We have:

∑

α∈Σk

∑

u∈Σk\{α}

pu x(u−1α) =
∑

u∈Σk

∑

α∈Σk\{u}

pu x(u−1α)

=
∑

u∈Σk

pu(x(Σk)− x(u−1))

= pkx(Σk)−
∑

u∈Σk

pu x(u−1)

= pk x(Σk)−Ak.

Thus, summing equation (7.3) on α ∈ Σk provides:

x(Σk) = Bk pk (1− x(Σk)) +Bk (pk x(Σk)−Ak)
= Bk (pk −Ak),

Using the above expression (7.2) of Ak, we obtain:

x(Σk) = Bk

(
pk − (1− x(Σk)

)(∑

i 6=k

Bi − 1

(n− 1)Bi
− (n− 2)(Bk − 1)

(n− 1)Bk

)
,

so that gathering the terms x(Σk), we have finally:

x(Σk) =
Bk pk −Bk

(∑
i 6=k

Bi−1
(n−1)Bi

− (n−2)(Bk−1)
(n−1)Bk

)

1−Bk
(∑

i 6=k
Bi−1

(n−1)Bi
− (n−2)(Bk−1)

(n−1)Bk

) .
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If Bk and x(Σk) are supposed to be known, the equations (7.3) for α ∈ Σk give a system of
linear equations.

One can check that a solution of the system of equations (7.3) is given by x(α) = (1 −
x(Σk)) fk(α,Bk). By summing over α ∈ Σk, we obtain: x(Σk) = (1− x(Σk))Fk(Bk), that is:

x(Σk) =
Fk(Bk)

1 + Fk(Bk)
.

Finally, we have:

x(Σk) =
Fk(Bk)

1 + Fk(Bk)
=
Bk pk −Bk

(∑
i 6=k

Bi−1
(n−1)Bi

− (n−2)(Bk−1)
(n−1)Bk

)

1−Bk
(∑

i 6=k
Bi−1

(n−1)Bi
− (n−2)(Bk−1)

(n−1)Bk

) .

This gives a system of k equations and k unknowns. If we are able to find B1, . . . , Bn then
we have a description of the measure µ∞, since for α ∈ Σk, x(α) = (1 − x(Σk)) fk(α,Bk)
where x(Σk) and Bk are known.

By Prop. 7.1, the harmonic measure of the random walk is Markov-multiplicative. So,
this system has at least one solution, which provides the harmonic measure. Conversely, any
positive solution provides a stationary measure on L∞ and is thus the (unique) harmonic
measure, by Th. 7.1. This proves the characterisation of the harmonic measure given in the
proposition.

For a free product of two groups, we obtain for example the following system of equations:





F1(B1)
1+F1(B1) =

p1+ 1
B2
−1

1
B1

+ 1
B2
−1

F2(B2)
1+F2(B2) =

p2+ 1
B1
−1

1
B1

+ 1
B2
−1
.

In the case where the n groups G1, . . . , Gn are all isomorphic, with same probabilities
allocated to associated elements, then one has a single equation to solve, which is: F (B)

1+F (B) =
1
n , where F = F1 = . . . = Fn. That is,

F (B) =
1

n− 1
.

Then, we obtain for any α ∈ Σ,

x(α) =
n− 1

n
f(α,B).

7.2.3 Examples of computations of the generating functions

If the group Gk is commutative, then for α ∈ Gk, the generating function f(α, z) is equal to:

f(α, z) =
∑

`≥1
v1,...,v`∈Σk
v1...v`=α

vi...v` 6=εk (1≤i≤`)

pv1 . . . pv` z
` =

∑

`≥1
v1,...,v`∈Σk
v1...v`=α

v1...vi 6=εk (1≤i≤`)

pv1 . . . pv` z
`,

since if (v1, . . . , v`) is a path to α without loop around α, then (v`, . . . , v1) is a path to α
that does not return to εk. This provides a bijection that preserves the weights pv1 . . . pv` of
the paths. The second sum can be easier to compute than the first one. We give below some
concrete examples of computations, using the expression on the right.
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• For G = Z/2Z = {ε, a},
f(a, z) = F (z) = paz.

• For G = Z/3Z = {ε, a, a2},

f(a, z) =
paz + p2

a2z
2

1− papa2z2
; f(a2, z) =

pa2z + p2
az

2

1− papa2z2
,

so that:

F (z) =
(pa + pa2)z + (p2

a + p2
a2)z2

1− papa2z2
.

• For G = Z/nZ, in order to find f(ak, z) for k ∈ {1, . . . , n}, one just has to solve the
linear system of equations given by: f(ak, z) = zpak + zpak−1f(a, z) + zpak−2f(a2, z) +
. . .+ zpak−(n−1)f(an−1, z).

• For G = Z, with pa = pa−1 = p and pak = 0 for k 6∈ {−1, 1}, a similar infinite

system of linear equations provides: f(an, z) = r(z)n where r(z) =
1−
√

1−4p2z2

2pz , and

F (z) = 2r(z)
1−r(z) .

• For the monoid Bn =< b|bn+1 = bn >, with pb = p and pbi = 0 for i > 1, we have for
k ∈ {1, . . . n},

f(bk, z) = pkzk,

and

F (z) =
pz

1− pz (1− pn+1zn+1).

7.2.4 Expression of the drift

The drift γ can be expressed as the expected change of length of an infinite normal form
distributed according to the harmonic measure µ∞, when left-multiplying by an element
distributed according to p [Led01, Mai05].

Let us consider an infinite word in normal form. It begins by a letter of Σk with probability
x(Σk). Let us denote by α ∈ Σk the first letter. Then the increment of the length will be
equal to +1 if we left-multiply by an element of Σ \ Σk (probability 1 − pk), equal to −1 if
we left-multiply by α−1, and equal to 0 otherwise (multiplication by an element of Σk \{α}).
We thus obtain:

γ =
n∑

k=1

x(Σk)(1− pk)−
n∑

k=1

∑

α∈Σk

x(α)pα−1 .

Moreover, with the notations of Sec. 7.2.2, we have:
∑

α∈Σk
x(α)pα−1 = Ak. Since both x(Σk)

and Ak can be written as rational functions of the Bk, a consequence is that the drift can
also be written as a rational function of the Bk.

7.3 The group Z2 ∗ Z: a case study

As a case study, let us consider the random walk on Z2 ∗Z. We set G1 = Z2 = 〈a, b|ab = ba〉
and G2 = Z = 〈c|−〉. With these notations, we have Σ1 = {aibj ; (i, j) ∈ Z2 \ {(0, 0)}},
Σ2 = {ck; k ∈ Z \ {0}} and Σ = Σ1 ∪ Σ2, see Ex. 7.2. We assume that the distribution
describing the steps of the random walk is concentrated on the three letters a, b, c and their
inverses, with: pa = pa−1 = pb = pb−1 = p, and pc = pc−1 = q, so that 2p+ q = 1/2.
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7.3.1 Equations for the harmonic measure

Let us describe the generating functions associated to G1 = Z2 and G2 = Z for this choice
of weights.

For an element aibj of Σ1, we have:

f1(aibj , z) =
∑

`≥0

M`(i, j) p
`z`,

where M`(i, j) is the number of paths of length ` on the grid Z2 that begin at (0, 0) and
arrive in (i, j), without having come back to (0, 0). The numbers M`(i, j) satisfy the following
recursive formula:

M`+1(i, j) = M`(i− 1, j) +M`(i+ 1, j) +M`(i, j − 1) +M`(i, j + 1), (7.4)

where we set Mk(0, 0) = 0 for any k ≥ 0. We have:

F1(z) =
∑

(i,j)∈Z2\{(0,0)}

f1(aibj , z)

=
∑

(i,j)∈Z2\{(0,0)}

∑

`≥0

M`(i, j) p
`z`

=
∑

`≥0

M` p
`z`

where M` =
∑

(i,j)∈Z2\{(0,0)}M`(i, j) is the number of paths of length ` that begin at (0, 0)
and never return to (0, 0). The first terms of F1(z) are given by:

F1(z) = 4pz+ 12p2z2 + 48p3z3 + 172p4z4 + 688p5z5 + 2576p6z6 + 10304p7z7 + 39340p8z8 + . . .

For G2 = Z, we also have the interpretation:

f2(ck, z) =
∑

`≥0

N`(k) q`z`,

where for k ∈ Z\{0}, N`(k) is the number of paths of length ` on Z that begin at 0 and arrive
in k, without having come back to 0. As mentioned in the previous section, the recurence
relation on the coefficients provides a close expression:

f2(ck, z) = r(z)k and F2(z) =
2r(z)

1− r(z) , where r(z) =
1−

√
1− 4q2z2

2qz
.

The numbers N` =
∑

k∈Z\{0}N`(k) are given by the central binomial coefficients. Precisely,

we have: N` = 2
(

`
b`/2c

)
, and the beginning of the development of F2(z) is given by:

F2(z) = 2pz + 2p2z2 + 4p3z3 + 6p4z4 + 12p5z5 + 20p6z6 + 40p7z7 + 70p8z8 + 140p9z9 + . . .

We are interested in finding B1 and B2 satisfying the system:





F1(B1)
1+F1(B1) =

4p+ 1
B2
−1

1
B1

+ 1
B2
−1

F2(B2)
1+F2(B2) =

2q+ 1
B1
−1

1
B1

+ 1
B2
−1
.

The second equation can be rewritten:

2r(B2)

1 + r(B2)
=

2q + 1
B1
− 1

1
B1

+ 1
B2
− 1

,
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providing an expression of B1 as a function of B2. By inserting it in the first equation, we
can find a numerical solution of the system.

By Prop. 7.2, the harmonic measure is given by:

x(aibj) =
1

1 + F1(B1)
f1(aibj , B1), x(ck) =

1

1 + F2(B2)
f2(ck, B2).

For p = q = 1/6, the numerical values we have obtained are B1 = 1.0727 and B2 = 1.1719,
providing x(Σ1) = 0.662 and x(Σ2) = 0.338.

7.3.2 Different notions of drift

Let us recall the definition of the length of a word given in Sec. 7.1.1, that is:

|g| = min{k ∈ N ; g = u1 ∗ . . . ∗ uk, ui ∈ Σ}.

For this notion of length, we have for example: |(a2b−3)c12(ab)c−2| = 4.

By specialising the formula of Sec. 7.2.4 and using x(Σ1) + x(Σ2) = 1 and 1 − 2q = 4p,
we obtain:

γ = (1− 4p)x(Σ1) + (1− 2q)x(Σ2)− 4p x(a)− 2q x(c)

= (2q − 4p)x(Σ1)− 4p x(a)− 2q x(c) + 4p.

Let us also define for an element aibj of Σ1:

|aibj |1 = |i|+ |j| and |aibj |∞ = max{|i|, |j|},

as well as for an element ck of Σ2: |ck|1 = |ck|∞ = |k|.
We can then define two different lengths by:

|g|1 = min{|u1|1 + . . .+ |uk|1 ∈ N ; g = u1 ∗ . . . ∗ uk, ui ∈ Σ}

|g|∞ = min{|u1|∞ + . . .+ |uk|∞ ∈ N ; g = u1 ∗ . . . ∗ uk, ui ∈ Σ}.
For these notions of lengths, we have respectively

|(a2b−3)c12(ab)c−2|1 = 21, and |(a2b−3)c12(ab)c−2|∞ = 18.

In terms of heaps (see Fig. 7.1), |g|1 corresponds to the smallest number of pieces of a heap
representing g, while |g|∞ is the smaller height of a heap representing g.

We denote by γ1 and γ∞ the drifts corresponding to these notions of length. To find an
expression for γ1 and γ∞, let us study in both cases the increment of the length of an infinite
normal form distributed according to the harmonic measure µ∞, when left-multiplying by
an element. We first consider γ1, and then γ∞.

Drift γ1 (growing speed of the number of pieces in the heap). Let us look at the
first letter of an infinite normal form word. This letter can be any letter of Σ.

1. If it is of the form ai (resp. bj), then the length with respect to | · |1 increases by 1
unless we left-multiply by a−1 if i > 0 or a if i < 0 (resp. b−1 if j > 0 or b if j < 0), in
which case it decreases by 1. So, the increment is +1 with probability 1− p = 3p+ 2q,
and −1 with probability p, and the expected value of the increment is 1−2p = 2p+ 2q.
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2. If it is another letter aibj of Σ1, then the increment is +1 with probability 2p+ 2q and
−1 with probability 2p, so that the expected value of the increment is 2q.

3. If it is of the form ck, then the increment is +1 with probability 4p + q and −1 with
probability q, and the expected value of the increment is 4p.

By symmetry,
∑

i∈Z\{0} x(ai) =
∑

i∈Z\{0} x(bi), so that the probability of event 1 is

2
∑

i∈Z\{0} x(ai). We have thus:

γ1 = 2(2p+ 2q)
∑

i∈Z\{0}

x(ai) + 2q
(
x(Σ1)− 2

∑

i∈Z\{0}

x(ai)
)

+ 4p x(Σ2)

= 4p
∑

i∈Z\{0}

x(ai) + 2q x(Σ1) + 4p x(Σ2)

= (2q − 4p)x(Σ1) + 4p
∑

i∈Z\{0}

x(ai) + 4p.

The value
∑

i∈Z\{0} x(ai) can be expressed more explicitly. Let us set

h0(z) = 1 +
∑

j∈Z\{0}

f1(bj , z),

and for i ≥ 1,

hi(z) =
∑

j∈Z
f1(aibj , z).

Using (7.4), we get, for i ≥ 1,

hi(z) = pz(hi+1(z) + 2hi(z) + hi−1(z)).

It follows that: hi(z) = h0(z)s(z)i, with:

s(z) =
1− 2pz −√1− 4pz

2pz
,

and since
∑

i∈Z hi(z) = F1(z) + 1, we obtain:

h0(z) = (1 + F1(z))
1− s(z)
1 + s(z)

,

and ∑

i∈Z\{0}

x(ai) =
1

1 + F1(B1)
(h0(B1)− 1) =

1− s(B1)

1 + s(B1)
− 1

1 + F1(B1)
.

Finally, since x(Σ1) = F1(B1)
1+F1(B1) , we obtain:

γ1 = (2q − 4p)
F1(B1)

1 + F1(B1)
+ 4p

(1− s(B1)

1 + s(B1)
− 1

1 + F1(B1)

)
+ 4p

= 2q
F1(B1)

1 + F1(B1)
+ 4p

1− s(B1)

1 + s(B1)

= 2q
F1(B1)

1 + F1(B1)
+ 4p

−1 + 4pB1 +
√

1− 4pB1

1−√1− 4pB1
.
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Drift γ∞ (growing speed of the height of the heap). Once again, to describe the
increment of the length when left-multiplying by an element of Σ, we look at the first letter
of the normal form word.

1. If it is of the form aibi (resp. aib−i) for some i ∈ Z0, then the increment (with respect
to | · |∞) is +1 with probability 2p+ 2q and 0 with probability 2p, which gives a mean
of 2p+ 2q.

2. If it is another letter aibj of Σ1, then the increment is +1 with probability p + 2q,
−1 with probability p, and 0 with probability 2p, so that the expected value of the
increment is 2q.

3. If it is of the form ck, then the increment is +1 with probability 4p + q and −1 with
probability q, and the expected value of the increment is 4p.

By symmetry, the probability of event 1 is equal to 2
∑

i∈Z\{0} x(aibi). We thus obtain:

γ∞ = 2(2p+ 2q)
∑

i∈Z\{0}

x(aibi) + 2q
(
x(Σ1)− 2

∑

i∈Z\{0}

x(aibi)
)

+ 4p x(Σ2)

= 4p
∑

i∈Z\{0}

x(aibi) + 2q x(Σ1) + 4p x(Σ2)

= (2q − 4p)x(Σ1) + 4p
∑

i∈Z\{0}

x(aibi) + 4p.

The value
∑

i∈Z\{0} x(aibi) can also be expressed more explicitly: if we introduce

h̃0(z) = 1 +
∑

j∈Z\{0}

f1(ajbj , z)

and for i ≥ 1,

h̃i(z) =
∑

j∈Z
f1(ai+jbi, z),

we indeed obtain for i ≥ 1:

h̃i(z) = 2pz(hi+1(z) + hi−1(z)),

which allows to find an expression for h̃0. Precisely, we have h̃i(z) = h̃0(z)s̃(z)i, with:

s̃(z) =
1−

√
1− 4p2z2

2pz
,

and since
∑

i∈Z hi(z) = F1(z) + 1, we obtain:

h̃0(z) = (1 + F1(z))
1− s̃(z)
1 + s̃(z)

,

and ∑

i∈Z\{0}

x(aibi) =
1

1 + F1(B1)
(h̃0(B1)− 1) =

1− s̃(B1)

1 + s̃(B1)
− 1

1 + F1(B1)
.
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Finally, since x(Σ1) = F1(B1)
1+F1(B1) , we obtain:

γ∞ = (2q − 4p)
F1(B1)

1 + F1(B1)
+ 4p

(1− s̃(B1)

1 + s̃(B1)
− 1

1 + F1(B1)

)
+ 4p

= 2q
F1(B1)

1 + F1(B1)
+ 4p

1− s̃(B1)

1 + s̃(B1)

= 2q
F1(B1)

1 + F1(B1)
+ 4p

−1 + 2pB1 +
√

1− 4p2B2
1

1 + 2pB1 −
√

1− 4p2B2
1

.

Numerical results. For p = q = 1/6, using the approximation B1 = 1.0727, we obtain
respectively γ1 = 0.576 and γ∞ = 0.492, these two values being consistent with the ex-
perimental results obtained when simulating the random walk. For the drift γ, we obtain
experimentally γ = 0.351.
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Chapter 8

Measures of maximal entropy of
subshifts of finite type

Il leur avait semblé à tous les trois que c’était une bonne idée d’acheter ce cheval.
Même si ça ne devait servir qu’à payer les cigarettes de Joseph. D’abord, c’était
une idée, ça prouvait qu’ils pouvaient encore avoir des idées.

– Marguerite Duras, Un barrage contre le Pacifique
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The study of measures of maximal entropy of SFT is motivated by the wish to be able to
generate configurations as uniformly as possible, and to understand what do “typical” config-
urations look like. On Z, it is well-known that a given SFT has a unique measure of maximal
entropy, which is a Markov measure, known as the Parry measure of the SFT (these measures
have been introduced by Shannon [Sha48], but Parry has proved the uniqueness [Par64]). We
present alternative descriptions of Parry measures, allowing to sample them using i.i.d. ran-
dom variables. On Z2, there can be in general several measures of maximal entropy, and
little is known about these measures. We also present a contribution to the understanding of
measures of maximal entropy for SFT defined on regular trees, providing a practical setting
to the theory of the f -invariant developed by Bowen [Bow10]. Finally, we highlight a close
connection between measures of maximal entropy of SFT and PCA.
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8.1 SFT on Z: the Parry measure

8.1.1 Definition and characterisation of the Parry measure

Let us consider the nearest-neighbour subshift of finite type ΣA over the alphabet A =
{1, . . . , n}, defined by the adjacency matrix A ∈Mn({0, 1}), that is:

ΣA = {x ∈ AZ ; ∀k ∈ Z, Axk,xk+1
= 1},

meaning that

Ai,j =

{
1 if ij is an admissible pattern,
0 if ij is a forbidden pattern.

In all the following, we assume that A is irreducible and aperiodic.

Remark. Through this chapter, we will only consider nearest-neighbour SFT, for which
the set of forbidden patterns is a subset of A2. But all the results can be extended to general
SFT. Indeed, if a SFT is described by forbidden patterns of length k, for k ≥ 2, then one
can interpret it as a nearest-neighbour SFT on the alphabet B = Ak−1, of transition matrix
B defined for u, v ∈ B by:

Bu,v =

{
1 if u2 . . . uk−1 = v1 . . . vk−2 and u1 . . . uk−1vk−1 is an admissible pattern,
0 otherwise.

Let us denote by S(i) the set of successors of i, that is, S(i) = {j ∈ A ;Ai,j = 1}.
We denote by W(A, k) the set of admissible words of ΣA of length k.
Since A is irreducible and aperiodic, by Perron-Frobenius theorem, there exists a real

eigenvalue λ > 0 such that: λ has strictly positive right and left eigenvectors, the eigenvectors
for λ are unique up to a multiplicative constant, and λ > |µ|, where µ is any other eigenvalue.
Moreover, the only eigenvectors whose components are all positive are those associated with
the eigenvalue λ.

This eigenvalue λ is called the Perron eigenvalue of A.

Definition 8.1 (Parry measure). Let λ be the Perron value of the matrix A, and let r be
the right-eigenvector associated to λ, satisfying

∑n
i=1 r(i) = 1. The Parry measure is the

Markov measure of transition matrix P defined, for any i, j ∈ A, by

Pi,j = Ai,j
r(j)

λr(i)
.

The vector r can be interpreted as a probability on A. By definition of λ and r, we have:∑n
k=1Ai,kr(k) = λr(i), so that λr(i) =

∑
k∈S(i) r(k) = r(S(i)). The matrix P can thus be

written:

Pi,j =

{
r(j)/r(S(i)) if j ∈ S(i)

0 otherwise,

meaning that it is a Markov-multiplicative measure, see Sec. 7.2.1.
The stationary measure of the Markov chain of transition matrix P is given by π(i) =

`(i)r(i) where ` is the left-eigenvector associated to λ satisfying
∑n

i=1 `(i)r(i) = 1. We have
indeed: ∑

i∈A
`(i)r(i)Pi,j =

∑

i∈A
`(i)r(i)Ai,j

r(j)

λr(i)
=
r(j)

λ

∑

i∈A
`(i)Ai,j = `(j)r(j).

We still denote by π the Parry measure, that is, the shift-invariant measure that is induced
by P and π on ΣA, so that the probability of occurence of a word a1 . . . ak is given by:

π(a1 . . . ak) = π(a1)Pa1,a2 . . . Pan−1,an .
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Let us notice that for any word w ∈ Ak such that awb ∈ W(A, k + 2), we have

π(awb) = π(a)
r(w1)

λr(a)

r(w2)

λr(w1)
· · · r(wk)

λr(wk−1)

r(b)

λr(wk)
=
π(a)r(b)

λk+1r(a)
.

With the terminology of Chap. 1, Sec. 1.2, we will thus say that π is Markov-uniform: for any
k ≥ 0 and any a, b ∈ A, the measure π(awb) does not depend of the word w ∈ {1, . . . , n}k
such that awb ∈ W(A, k + 2). In general, the uniform measures on the set W(A, k) of
allowable words of ΣA of length k are not consistent for different values of k, so that it is not
possible to extend them with Kolmogorov consistency theorem, to define a measure on the
whole subshift. But in some sense, the Parry measure distributes probabilities on paths as
uniformly as possible.

The following characterisation of the Parry measure is a folk result [Kit98], that has been
generalised by Burton and Steif [BS94].

Theorem 8.1. Let MΣA be the set of translation invariant measures on the SFT ΣA, and
let π ∈MΣA. The following properties are equivalent.

(i) The measure π is the Parry measure associated to ΣA.

(ii) The measure π is Markov-uniform.

(iii) The measure-theoretic entropy of π satisfies h(π) = supµ∈MΣA
h(µ).

The Parry measure π is thus the unique measure that achieves the supremum of the
entropy. Its entropy is given by:

h(π) = −
∑

ij∈W(A,2)

πiPi,j logPi,j

= −
∑

ij∈W(A,2)

`(i)r(i)
r(j)

λr(i)
log

r(j)

λr(i)

= − 1

λ

∑

i,j∈A
`(i)r(j)Ai,j(log r(j)− log λ− log r(i))

= −
∑

j∈A
`(j)r(j)(log r(j)− log λ) +

∑

i∈A
`(i)r(i) log r(i)

= log(λ),

which is equal to the topological entropy of ΣA, defined by:

h(ΣA) = lim
k→∞

log(Card W(k,A))

k
.

The following example will be used as an illustration through this chapter.

Example 8.1 (Fibonacci subshift). The Fibonacci or golden mean subshift is the subshift

over the binary alphabet A = {0, 1}, defined by the matrix: A =

(
1 1
1 0

)
. The constraints

can also be represented by the automaton of Fig 8.1.

The Perron value of A is the golden ratio ϕ = 1+
√

5
2 , satisfying ϕ2 = ϕ + 1. The

corresponding right-eigenvector is given by r(0) = 1
ϕ and r(1) = 1

ϕ2 , so that the Parry

measure of the subshift is given by the transition matrix: P =

( 1
ϕ

1
ϕ2

1 0

)
, and we have

π(0) = ϕ2

1+ϕ2 , π(1) = 1
1+ϕ2 . The entropy of the subshift is equal to log(ϕ).
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0 1

Figure 8.1: Fibonacci subshift: automaton representing the constraint, and example of con-
figuration obtained.

In Chap. 7, we have seen how random walks on free products of groups give rise to Markov
multiplicative measures on the SFT defined by the set of normal form words. The random
walks on free products of groups that we have studied can be seen as the concatenation of
i.i.d. elements of the different groups, with simplification when two consecutive elements
belong to the same group. Conversely, the next two sections show how starting from a
particular Markov multiplicative measure π corresponding to a Parry measure, we can define
a probability measure B(p) on the alphabet A, as well as simplification rules, such that from
a sequence distributed according to B(p)⊗Z, after applying the possible simplifications, we
recover a sequence distributed according to the measure π.

8.1.2 Realisations of the Parry measure with i.i.d random variables

We present here a very simple way to generate words of ΣA distributed according to the
Parry measure. The proposition follows from the fact that the Parry measure is the Markov-
multiplicative measure associated to the probability r.

Proposition 8.1. Let r be the right-eigenvector associated to the Perron value of A, and
satisfying

∑n
i=1 r(i) = 1. A way to generate the Parry measure π of the SFT ΣA consists

in drawing the first letter according to π, and then choosing successively and independently
letters of A according to the probability r, and rejecting letters that would provide a forbidden
pattern.

Precisely, the algorithm is the following.

Algorithm 5: Sampling the Parry measure with i.i.d. r.v.

Data: A sequence (xt)t≥1 of i.i.d. r.v. of probability r.
Result: A sequence a1 . . . an distributed according to the Parry measure.
begin

t = 0 ; k=1 ;
Choose the first letter a1 according to the probability π;
repeat

If Aak,xt = 1, then choose ak+1 = xt and set k = k + 1 (else, do nothing) ;
t = t+ 1.

until k=n ;
return The sequence a1 . . . an

end

If the last letter that has been chosen is the letter i, then the next letter will be j with
probability:

Ai,j
r(j)

r(S(i))

so that we indeed recover the Parry measure.

Example 8.2. For the Fibonacci subshift, the algorithm consists in choosing the first letter

to be a 0 with probability π(0) = ϕ2

1+ϕ2 , and a one with probability π(1) = 1
1+ϕ2 . And then

for all the following letters, choosing to write a 0 with probability r(0) = 1
ϕ and a 1 with

probability r(1) = 1
ϕ2 , and rejecting the 1 that are not allowed. Here, the algorithm is not
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very efficient since once we have chosen a 1, there is no choice for the following letter: it is
thus useless to wait until drawing a 0.

If there exists a particular symbol 0 such that for any letter i ∈ A, A0,i = Ai,0 = 1, then
the Parry measure can also be obtained by iterating a simple probabilistic cellular automaton.

Proposition 8.2. Let ΣA be an SFT on the alphabet A = {0, 1, . . . , n} such that for any
i ∈ A, A0,i = Ai,0 = 1. We define Ā = {0̄, 1̄, . . . , n̄} and B = A ∪ Ā. Let us consider the
PCA F of alphabet B and neighbourhood N = {−1, 0} defined by the local function:

f(i, j) =




B(r) if i ∈ Ā, j ∈ A and Ai,j = 0
δj̄ if i ∈ Ā, j ∈ A and Ai,j = 1

δj otherwise.

We choose a configuration according to the Bernoulli product measure µr = B(r)⊗Z on AZ,
and replace all the 0’s by 0̄’s. From this initial configuration, the trajectories of the PCA con-
verge to configurations of the SFT distributed according to the Parry measure (when forgetting
the overlines of the letters).

Proof. We will define a coupling between the descriptions of the Parry measure of Prop. 8.1
and Prop. 8.2. Let us consider a sequence ((xs,t)s∈Z,t∈N) of i.i.d. random variables of proba-
bility B(r). We construct a space-time diagram of the PCA F as follows: the initial configu-
ration is (xs,0)s∈Z (with 0’s replaced by 0̄’s), and for each cell s, each time we need to draw
a Bernoulli B(r) we take the first element of the sequence (xs,t)t≥0 that has not been used.

Let us observe that once a cell is in a state of Ā it always remains in the same state. Let
k ∈ Z be such that xk,0 = 0, so that in the initial configuration, cell k is in state 0̄. Initially,
cell k + 1 is in a state xk+1,0 = a1 distributed according to the Bernoulli B(r). Since 0 a1 is
an allowed pattern, a1 becomes ā1 and keeps this state forever. Cell k + 2 is initially in a
state xk+2,0 = i distributed according to B(r). If a1 i is an allowed pattern, then i becomes
ī and the cell remains in that state. If not, we look at xk+2,1, and so on, until we read a
value xk+2,t = a2 such that a1a2 is an allowed pattern. Before fixing the value of cell k + 2,
the value of cell k + 3 has not changed. The final value of cell k + 3 will be the first of
the (xk+3,t)t≥0 that is allowed after a2, and so on. The construction thus corresponds to a
running of the Markov chain defining the Parry measure. By stationarity, the measure on
AZ obtained is the Parry measure.

When iterating the PCA, the configurations progressively stabilise on a fixed point that is
distributed according to the Parry measure. This provides a parallelisation of the computa-
tion of the Parry measure. Another possible description of the process consists in allocating
to each cell independently a 0 with probability r(0) (and nothing otherwise). This divides
the configuration into different sections separated by 0’s. From each of the cells labeled 0,
we run the Markov chain defining the Parry measure up to the last cell before the next 0.
This can be made in parallel in the different sections of the configurations.

Example 8.3. For the Fibonacci SFT, one can also extend the neighbourhood instead of
extending the alphabet. The initial state is chosen according to the Bernoulli product measure
µr = B(r)⊗Z, then we iterate the PCA of neighbourhood N = {−2,−1, 0} defined by:

f(i, j, k) =

{
B(r) if (i, j, k) = (0, 1, 1)
δk otherwise

or equivalently, the CA of local function

f(i, j, k) =

{
0 if (i, j, k) = (0, 1, 1)
k otherwise.
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In some sense, these PCA scan the configuration from left to right and correct patterns
that are not allowed. It would be satisfying to obtain the Parry measure by iterating a PCA
with a symmetric update rule. A candidate we could think of is the PCA defined by the
neighbourhood N = {−1, 0, 1} and the local function:

f(i, j, k) =

{
B(r) if (i, j) = (1, 1) or (j, k) = (1, 1),
δj otherwise.

But we point out that this PCA does not have the behaviour we wish, since from any Bernoulli
product measure, the final values of two cells at distance greater than 2 are independent,
which is not the case under the Parry measure.

8.1.3 The case of confluent SFT

Let us consider a nearest-neighbour SFT ΣA on the alphabet A = {1, . . . , n}. We introduce
the following terminology, that is specific to this thesis.

Definition 8.2 (Confluent SFT). We say that the SFT ΣA is confluent if the matrix A
satisfies:

(Ai,j = 0 and Aj,k = 0) =⇒ i = k.

A SFT is confluent if and only if for any sequence of letters, if we delete forbidden patterns
occuring in the sequence until only admissible patterns remain, the word that is obtained
does not depend on the order in which the forbidden patterns have been deleted.

Let ΣA be a confluent SFT. Then for any i ∈ A, there is at most one letter j ∈ A such
that Ai,j = Aj,i = 0. Indeed, if Ai,j = Aj,i = 0 and Ai,k = Ak,i = 0, then we have in
particular Aj,i = Ai,k = 0, so that by definition of confluence, j = k.

We partition the alphabet into two subsets:

S1 = {i ∈ A ; ∃` ∈ A, Ai,` = A`,i = 0},

S2 = A \ S1 = {i ∈ A ; ∀` ∈ A, Ai,` = 1 or A`,i = 1}.
We set s1 = Card S1 and s2 = Card S2 (note that s1 + s2 = n).

Lemma 8.1. For any i ∈ S1 and j ∈ S2, Ai,j = Aj,i = 1.

Proof. Let i ∈ S1. There exists ` such that Ai,` = A`,i = 0. If Ai,j = 0, then A`,i = Ai,j = 0,
so that j = `. In particular, j 6∈ S2. In the same way, if Aj,i = 0, then Aj,i = Ai,` = 0,
meaning that j = ` ∈ S1.

Example 8.4. Let us consider for example the SFT defined by A = {1, . . . , 10}, and

A =




1 0 1 1 1 1 1 1 1 1
0 1 1 1 1 1 1 1 1 1
1 1 0 1 1 1 1 1 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 0 0 0
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1
1 1 1 1 1 1 1 1 1 1




.

One can check that this matrix defines a confluent SFT. Fig. 8.2 represents the graph of
forbidden transitions of ΣA. We have: S1 = {1, 2, 3} and S2 = {4, 5, 6, 7, 8, 9, 10}, so that
s1 = 3 and s2 = 7.
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Figure 8.2: Graph of forbidden transitions for the SFT of Ex. 8.4.

Proposition 8.3. Let λ be the Perron eigenvalue of the matrix A defining the confluent SFT
ΣA, and let σ =

∑
k∈S2

∑n
`=1(1−Ak,`). We have:

λ3 + (1− n)λ2 + (σ − s2)λ+ σ = 0, (8.1)

and there exist q1, q2 ≥ 0 satisfying s1q1 + s2q2 = 1 and

{
1 = λq1 − q1

λ + q1s1
λ + q2σ

λ
1 = λq2 + q1s1

λ + q2σ
λ .

Furthermore, a way to generate the Parry measure of ΣA consists in drawing a bi-infinite i.i.d
sequence of letters of A according to the distribution

∑
i∈S1

q1 δi +
∑

i∈S2
q2 δi, and erasing

forbidden patterns.

We point out that the values of q1 and q2 are easy to find. One only has to identify the
sets S1 and S2 by observing the matrix A, and to compute the value of σ, which corresponds
to the number of edges among the vertices of S2 in the graph of forbidden transitions (so
that for Ex. 8.4, we have σ = 5). Then, the Perron value λ is a root of a polynomial of degree
3. And to determine the probabilities q1 and q2, one just has to solve a linear system of two
equations and two unknowns.

Before proving the proposition, let us mention the result obtained for our favorite example.

Example 8.5. The Fibonacci subshift is a confluent SFT, with S1 = {1} and S2 = {0}, so
that s1 = s2 = 1. We have σ = 0, and equation (8.1) becomes λ3 − λ2 − λ = 0. We obtain
q1 = 1

ϕ and q2 = 1
ϕ2 , which means that if we draw independently 0’s with probability 1

ϕ2 and

1’s with probability 1
ϕ and then delete the pairs of consecutive 1’s we see in the bi-infinite

sequence obtained, we recover the Parry measure of the Fibonacci subshift. It is to compare
with the result presented in Ex. 8.2.

Proof. Let p be a given probability on A. We draw a sequence of AN according to the
Bernoulli product measure B(p)⊗N and delete forbidden patterns until reaching a word of the
SFT. The understanding of the measure ν obtained on the admissible sequences of AN will
then allow us to describe the measures obtained on bi-infinite sequences of ΣA when starting
from the Bernoulli product measure B(p)⊗Z.

Let P be the transition matrix of the Parry measure. We can look for parameters pi for
which ν would have the form:

ν(a1 . . . ak) = ν(a1)Pa1,a2 . . . Pak−1,ak , (8.2)

for some distribution ν on A. If it is the case, then by shift-stationarity, the measure obtained
on AZ will be exactly the Parry measure. For readability, we will write pi and ri for p(i)
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and r(i) respectively, where r still denotes the normalised right-eigenvector of A associated
to the Perron value, so that: Pi,j = Ai,j

rj
λri
.

By definition, the measure ν is invariant by left-multiplying by an element of A of proba-
bility p, and in the new word obtained, deleting the first two letters if they form a forbidden
pattern. For one-dimensional marginals, the equation of this p-stationarity can be written:

ν(i) = pi

n∑

k=1

Ai,kν(k) +

n∑

k=1

n∑

`=1

pk(1−Ak,`)ν(`i).

For larger marginals, the traffic equation is:

ν(i1i2 . . . it) = pi1Ai1,i2ν(i2 . . . it) +
n∑

k=1

n∑

`=1

pk(1−Ak,`)ν(`i1i2 . . . it).

If we require (8.2), it is sufficient to consider the equations for marginals of size one and
two:

ν(i) = pi

n∑

k=1

Ai,kν(k) +
n∑

k=1

n∑

`=1

pk(1−Ak,`)ν(`)P`,i,

ν(i)Pi,j = piAi,jν(j) +
n∑

k=1

n∑

`=1

pk(1−Ak,`)ν(`)P`,iPi,j .

Finally, by multiplying the first line by Pi,j and substracting it to the second line, we
obtain the following system:





ν(i) = pi
∑n

k=1Ai,kν(k) +
∑n

k=1

∑n
`=1 pk(1−Ak,`)ν(`)P`,i

Ai,jν(j) = Pi,j
∑n

k=1Ai,kν(k).

The second equation is satisfied for ν = r. The first equation then becomes:

ri = pi

n∑

k=1

Ai,krk +
n∑

k=1

n∑

`=1

pk(1−Ak,`)r`P`,i.

Since
∑n

k=1Ai,krk = λri and P`,i = A`,i
ri
λr`

, we can simplify the above expression by ri
and obtain:

1 = λpi +
1

λ

n∑

k=1

n∑

`=1

(1−Ak,`)A`,ipk. (8.3)

We will prove that there exist values p1, . . . , pn ≥ 0 with
∑n

i=1 pi = 1, satisfying the above
equations (8.3).

Let us recall the partition of the alphabet into two subsets: S1 = {i; ∃`, Ai,` = A`,i = 0},
and S2 = A \ S1 = {i;∀`, Ai,` = 1 or A`,i = 1}, with s1 = Card S1 and s2 = Card S2.

Since the subshift is assumed to be confluent, for i ∈ S1, there exists a unique letter `
(possibly the letter i itself) such that Ai,` = A`,i = 0 (and then, we also have ` ∈ Σ1).

For a letter i ∈ S2, three cases are possible:

• ∀` ∈ A, Ai,` = 1 and A`,i = 1,

• ∃` ∈ A, Ai,` = 0 and ∀k ∈ A, Ak,i = 1,

• ∃` ∈ A, A`,i = 0 and ∀k ∈ A, Ai,k = 1.
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Let us now separate the terms k = i and k 6= i in the sum appearing in equation (8.3).
We have:

n∑

k=1

n∑

`=1

(1−Ak,`)A`,ipk =
n∑

`=1

(1−Ai,`)A`,ipi +
∑

k 6=i

n∑

`=1

(1−Ak,`)A`,ipk.

By confluence, if k 6= i, (1−Ak,`)(1−A`,i) = 0, so that: (1−Ak,`)A`,i = 1−Ak,`. Thus,

∑

k 6=i

n∑

`=1

(1−Ak,`)A`,ipk =
∑

k 6=i

n∑

`=1

(1−Ak,`)pk =
n∑

k=1

n∑

`=1

(1−Ak,`)pk −
n∑

`=1

(1−Ai,`)pi,

and:
n∑

k=1

n∑

`=1

(1−Ak,`)A`,ipk =

n∑

k=1

n∑

`=1

(1−Ak,`)pk −
n∑

`=1

(1−Ai,`)(1−A`,i)pi.

For i ∈ S1,
∑n

`=1(1−Ai,`)(1−A`,i) = 1, whereas for i ∈ S2,
∑n

`=1(1−Ai,`)(1−A`,i) = 0.
So, for i ∈ S1, equation (8.3) becomes:

1 = λpi +
1

λ

( n∑

k=1

n∑

`=1

(1−Ak,`)pk − pi
)
,

and for i ∈ S2, it becomes:

1 = λpi +
1

λ

( n∑

k=1

n∑

`=1

(1−Ak,`)pk
)
.

The quantity
∑n

k=1

∑n
`=1(1 − Ak,`)pk does not depend on i. Thus, if the equation has a

solution, the pi should have a common value q1 for any i ∈ S, and a common value q2 for
any i ∈ S, with:

1 = λq1 −
q1

λ
+
q1s1

λ
+
q2σ

λ
,

1 = λq2 +
q1s1

λ
+
q2σ

λ
,

where σ =
∑

k∈S2

∑n
`=1(1−Ak,`).

Our problem is thus equivalent to finding q1, q2 ≥ 0 with s1q1 + s2q2 = 1 satisfying:

{
1 = λq1 − q1

λ + q1s1
λ + q2σ

λ ,
1 = λq1 + q1s1

λ + q2σ
λ .

(8.4)

One can check that it is possible if and only if λ satisfies:

λ4 − nλ3 + (s1 + σ − 1)λ2 + s2λ− σ = 0.

Since 1 is a root of that equation, we can simplify into:

λ3 + (1− n)λ2 + (σ − s2)λ+ σ = 0.

Let us denote by un the number of words of length n of our SFT ending with a letter of
S1, and by vn the number of words of length n of the SFT ending with a letter of S2. We
claim that:

un+1 = (s1 − 1)un + s1vn, (8.5)

and
vn+1 = s2(un + vn)− σ(un−1 + vn−1). (8.6)
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Let us first explain relation (8.5). An admissible word of length n+ 1 ending by a letter
of S1 can be obtained either by taking an admissible word of length n ending by some letter
i of S1 (un choices) and adding at the end of that word any letter of S1 different from the
only letter ` such that Ai,` = 0 (s1 − 1 choices), or by extending a word of length n ending
with a letter of S2 (vn choices) by any letter of S1 (s1 choices). It is always possible since for
any i ∈ S2 and any j ∈ S1, we have Ai,j = 1 (Lemma 8.1).

In order to explain equation (8.6), let us also introduce xn, the number of words of length
n ending by a given (fixed) letter i of S2 such that ∃` ∈ A, Ai,` = 0 (we will see that the value
of xn does not depend of the choice of such an i ∈ S2). If i ∈ S2 satisfies ∃` ∈ A, Ai,` = 0,
then: ∀k ∈ A, Ak,i = 1. It follows that xn = un−1 + vn−1, since any word of length n− 1 can
be (uniquely) extended into a word of length n ending by i. Now, to obtain a word of length
n+ 1 ending in any point of S2, if we extend any admissible word of length n by a letter of
S2 (providing s2(un + vn) words), we have counted exactly σxn non-admissible words: the
words ending by i` for i as above, and ` such that Ai` = 0. The expression follows.

Equations (8.5) and (8.6) can be rewritten:




un
vn
un+1

vn+1


 =




0 0 1 0
0 0 0 1
0 0 s1 − 1 s1

−σ −σ s2 s2







un−1

vn−1

un
vn


 .

The characteristic polynomial of the above matrix that is involved is given by:

X (X3 + (1− s1 − s2)X2 + (σ − s2)X + σ).

We have: limn→∞
log(un+vn)

n = log µ, where µ is a positive root of this polynomial. But we
also know that the topological entropy of ΣA is equal to the Perron eigenvalue λ of A. It
follows that λ satisfies λ3 + (1 − s1 − s2)λ2 + (σ − s2)λ + σ = 0. Thus, system (8.4) has a
solution, from which we can define p satisfying (8.3). This concludes the proof.

8.2 SFT on Zd: characterisation of the measures of maximal
entropy

In dimension d ≥ 2, there are examples of SFT having several measures of maximal entropy,
and these measures have no simple expression in general [BS94]. But we still have an analogue
of Th. 8.1.

Let Σ be a nearest-neighbour SFT on Zd. We recall that a measure µ ∈ MΣ is Markov-
uniform if it defines a Markov random field, and furthermore, the conditional distribution of
µ on any finite set F given the configuration on its boundary ∂F is µ-a.s. uniform over all
configurations on F which extend the configuration on ∂F .

Theorem 8.2 ([BS95]). Let Σ be a (nearest-neighbour) SFT on Zd. There exists a measure
µ ∈ MΣ such that h(µ) = supν∈MΣ

h(ν). For µ ∈ MΣ, the two following properties are
equivalent.

(i) The measure µ is Markov-uniform.

(ii) The measure-theoretic entropy of µ satisfies h(µ) = supν∈MΣ
h(ν).

Furthermore, the topological entropy of Σ satisfies:

h(Σ) = sup
ν∈MΣ

h(ν).
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Example 8.6. For the Fibonacci SFT on Z2, known also as the hard core (or hard square)
model, the forbidden patterns are two consecutive ones, horizontally or vertically. We present
an example of configuration in Fig. 8.3. It is known that this SFT has a unique measure
of maximal entropy [vdBS94]. Nevertheless, this measure has no simple effective description
and no close form is known for the value of the topological entropy. Approximating the
entropy has lead to many research works, and is still an active research area [MP13].

Figure 8.3: Example of configuration for the two-dimensional Fibonacci subshift.

In Sec. 8.4, we will go further into the interpretation of measures of maximal entropy in
terms of Gibbs measures, and present a connection to PCA.

8.3 SFT on regular trees: generalising the Parry measure

We will now consider nearest-neighbour SFT on infinite regular trees, defined by some adja-
cency matrix A. Let us denote by Fd the free monoid with d generators. It can be represented
as an infinite rooted tree of degree d+ 1 (with a root of degree d). The empty word, corre-
sponding to the root, is denoted by ε. The SFT Σd

A is the set of labelings of the nodes of
this tree such that if a node is labeled by the letter i, its children are labeled by letters that
are in the set S(i) = {j ∈ A; Ai,j = 1}. Formally, the alphabet is still A = {1, . . . , n}, and if
the generators of Fd are denoted by a1, . . . , ad, then:

Σd
A = {x ∈ AFd ; ∀w ∈ Fd,∀i ∈ {1 . . . , d}, Axw,xwai = 1}.

In Sec. 8.3.3, we will assume that the matrix A is symmetric. In that case, the orientation
of the tree can be forgotten, and instead of working on Fd, it also makes sense to consider
the finitely presented group Td+1 = 〈g1, . . . , gd, gd+1 | g2

i = 1〉.
SFT on trees have already been studied from a theoretical computer science point of

view [AB12]. Here, the questions we address are the following. How to construct Markov-
uniform measures for such SFT? Do the Markov-uniform measures maximise the entropy, for
some “good” notion of entropy?

8.3.1 Markov chains on regular trees and the f-invariant

Let Q be a stochastic matrix with state space A, and let π be a probability measure on A.
A natural way to label the elements of Fd by letters of A (while taking in consideration

the constraints given by the matrix A) is to do it in a Markovian way: we first choose the
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label of the root according to the distribution π, and then, if a node w is labeled by the letter
α0, its children wai, for i ∈ {1, . . . , d}, are labeled independently by a β with probability
Pα,β. This leads us to define the notion of Markov chains on trees.

For an element w ∈ Fd, let us denote by C(w) the set of children of w. Precisely,
C(w) = {wh;h ∈ Fd \ {ε}}.

Definition 8.3 (Markov chains on trees). The Markov chain over Fd of transition matrix Q
and initial distribution π is the set of random variables (Xw)w∈Fd such that the distribution
of Xε equals π, and for any w ∈ Fd and any generator ai,

∀k ≥ 1,∀v1, . . . , vk ∈ Fd \ C(w),∀α, β, α1, . . . , αk ∈ A,

P(Xwai = β|Xw = α,Xv1 = α1, . . . , Xvk = αk) = P(Xwai = β|Xw = α) = Qα,β.

If π is an invariant measure of Q, the Markov chain is said to be invariant.

A Markov chain on Fd induces a Markov measure on AFd . We now present the f -invariant
of Bowen, that has been introduced in order to generalise the theory of entropy to free group
actions [Bow10].

Definition 8.4 (f -invariant). For any stochastic matrix Q of invariant measure π inducing
a Markov measure µ on AFd , we define the f -invariant of µ by:

f(µ) = d

n∑

i=1

π(i) log(π(i))− d+ 1

2

n∑

i=1

n∑

j=1

π(i)Qi,j log π(i)Qi,j , (8.7)

or equivalently by

f(µ) =
d− 1

2

n∑

i=1

π(i) log(π(i))− d+ 1

2

n∑

i=1

n∑

j=1

π(i)Qi,j logQi,j .

For d = 1, we recover the usual definition of the entropy of a Markov measure on Z.
Like the entropy, the f -invariant can be defined for other measures on Fd than Markov

measures, and it is a measure-conjugacy invariant for action of free groups. We do not present
the f -invariant in its general setting. In our context, considering only Markov measures is
justified by the fact that they maximise the f -invariant [Bow10, Cor. 11.2].

Remark. Curisously, the formula for the f -invariant given in (8.7), which is the one that
seems to make sense in our context, happens to be a very slight modification of the one of
Bowen [Bow10, Cor. 7.6]. This is something we would like to better understand. For a free
group generated by r elements, the formula of Bowen is the same with d replaced by 2r− 1,
which is coherent in some sense since the degree of the tree is then equal to 2r. But in what
follows, we do not assume that d is odd.

In the next section, we will present a construction for a SFT Σd
A of a particular measure

having the property to be Markov-uniform. We will then study this measure in the light of
the f -invariant, and show that there is a strong connection between being Markov-uniform
and maximising the f -invariant.

8.3.2 Construction of Markov-uniform measures

In the context of the free monoid Fd with d generators, we define the boundary ∂S of a set
S ⊂ Fd \ {ε} by:

∂S = {w ∈ Fd \ S ; ∃u ∈ S, ∃i ∈ {1, . . . , d}, w = uai or u = wai}.
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For a subset S ⊂ Td+1 = 〈g1, . . . , gd, gd+1 | g2
i = 1〉, one can also define:

∂S = {w ∈ Td+1 \ S ;∃u ∈ S,∃i ∈ {1, . . . , d, d+ 1}, w = ugi}.

We will focus on measures that are Markov-uniform with respect to these boundaries.
As already mentioned, to construct such a Markov-uniform measure π for a SFT Σd

A defined
on Fd, it is natural to consider a measure defined by a stochastic matrix P , such that the
nodes of the tree are labeled successively in a Markovian way, using the transition matrix
P . Let us see if there exists a matrix P inducing a Markov measure on Σd

A that would be
Markov-uniform. Like for Parry measure, we can expect some strong independence property
and search P under a Markov multiplicative form, that is, under the form:

Pi,j = Ai,j
r(j)∑n

k=1Ai,kr(k)
= Ai,j

r(j)

r(S(i))

for some probability vector r.

Furthermore, in order for the measure obtained to be Markov-uniform, for any i, k1, . . . , kd,
the value Pi,j

∏d
t=1 Pj,kt should not depend on the letter j such that Ai,j

∏d
t=1Aj,kt = 1. In

particular, if we take k1 = . . . = kd = k, we should have:

Pi,jP
d
j,k = Ai,jAj,k

r(j)

r(S(i))

( r(k)

r(S(j))

)d
,

so that the quantity
r(j)

r(S(j))d
=

r(j)

(
∑n

k=1Aj,kr(k))d

should not depend on the letter j such that Ai,jAj,k = 1. It is thus natural to search r
satisfying

∑n
s=1Aj,sr(s) = λr(j)1/d for some constant λ.

We will use the following extension of the weak form of Perron-Frobenius theorem to
prove that it is always possible to find a suitable probability vector r.

Proposition 8.4. Let A be an irreducible non-negative matrix, and let d ≥ 1. There exists
λ > 0 and r1, . . . , rn > 0 satisfying

∑n
i=1 ri = 1 and:

A



r1
...
rn


 = λ



r

1/d
1
...

r
1/d
n


 .

Proof. Let us consider the set S = {x ∈ Rn+;
∑n

i=1 xi = 1}. The set S is a convex compact
set of Rn. We define a function F : S → S by

F(x) =
1∥∥∥∥∥∥∥

A



xd1
...
xdn




∥∥∥∥∥∥∥
1

A



xd1
...
xdn


 .

One can check that the function F is well-defined and continuous. Consequently, by Brouwer

fixed point theorem, there exists x ∈ S, such that F(x) = x. Let us set α =

∥∥∥∥∥∥∥
A



xd1
...
xdn




∥∥∥∥∥∥∥
1

and
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yi = xdi for 1 ≤ i ≤ d. We obtain:

A



y1
...
yn


 = α



y

1/d
1
...

y
1/d
n


 ,

so that for λ = α‖y‖
1
d
−1

1 and r = 1
‖y‖1 y, we have

∑n
i=1 ri = 1 and:

A



r1
...
rn


 = λ



r

1/d
1
...

r
1/d
n


 .

As we will see in Sec. 8.3.4, unlike the one-dimensional case, the map F is not contractive
in general for d ≥ 2.

Proposition 8.5. Let r be a probability vector satisfying

A



r1
...
rn


 = λ



r

1/d
1
...

r
1/d
n


 . (8.8)

Then the Markov measure on Fd defined by the transition matrix

Pi,j = Ai,j
rj∑n

k=1Ai,krk
= Ai,j

rj

λr
1/d
i

is a Markov-uniform measure for Σd
A. We will call such a measure a d-Parry measure.

Proof. The value
rj

λr
1/d
i

∏d
t=1

rkt

λr
1/d
j

does not depend on j, so that it is easy to check that for

any finit set, the measure is Markov-uniform.

8.3.3 The f-invariant of d-Parry measures

Let us consider a symmetric nearest neighbour system on Fd, that is, a SFT on Fd defined
by a symmetric adjacency matrix A. Let P be a transition matrix defined as in the previous
subsection by:

Pi,j = Ai,j
rj

λr
1/d
i

, where A



r1
...
rn


 = λ



r

1/d
1
...

r
1/d
n


 .

Then, the invariant measure of the Markov chain P is given by:

πi = αλr
1+1/d
i , where α =

1

λ
∑n

i=1 r
1+1/d
i

,

and the Markov chain in reversible.

Proposition 8.6. Let MΣdA
be the set of translation invariant measures on the symmetric

SFT Σd
A, and let µ ∈MΣdA

. The measure µ maximising the f -invariant is a d-Parry measure.

Conversely, d-Parry measures are (local) extrema of the f -invariant.
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Proof. As already mentioned, Markov chains maximise the f -invariant [Bow10, Cor. 11.2].
We follow the steps used on Z by Kitchens [Kit98, Paragraph 6.2]. A one-step Markov

measure ν, stationary measure of Q, is uniquely defined by a set of weights xi,j = ν(i)Qi,j
satisfying:

• xi,j ≥ 0,

• ∑n
i=1

∑n
j=1 xi,j = 1,

• ∀j ∈ {1, . . . , n},∑n
i=1 xi,j =

∑n
k=1 xj,k.

The f -invariant is then given by:

f(x) = d
n∑

i=1

(
n∑

j=1

xi,j) log
n∑

j=1

xi,j −
d+ 1

2

n∑

i=1

n∑

j=1

xi,j log xi,j .

We want to maximise the function f under the above constraints:

gj(x) =
n∑

i=1

xi,j −
n∑

k=1

xj,k = 0 for all j ∈ {1, . . . , n}

g(x) = 1−
n∑

i=1

n∑

j=1

xi,j = 0.

Making use of Lagrange multipliers, we introduce the function:

F (x, κ, η) = f(x) +
n∑

s=1

κsgs(x) + ηg(x),

and compute, for i, j such that Ai,j = 1,

∂F

∂xi,j
= d(log

n∑

k=1

xi,k + 1)− d+ 1

2
(log xi,j + 1) + κi(δi,j − 1) + κj(1− δi,j)− η.

=
−1

2
log

xd+1
i,j

(
∑n

k=1 xi,k)
2d

+
d− 1

2
+ κj − κi − η.

This is equal to 0 if and only if:

xd+1
i,j

(
∑n

k=1 xi,k)
2d

= exp(d− 1− 2κi + 2κj − 2η).

Let us define: αi = e
2κi
d+1 for i ∈ {1, . . . , n}, and β = e

d−1−2η
d+1 . In order to simplify the

notations, we also define: pi =
∑n

j=1 xi,j , so that:

xi,j

p
2d
d+1

i

= β
αj
αi
. (8.9)

If xi,j = xj,i (symmetry condition), we obtain:

p
2d
d+1

i

α2
i

=
p

2d
d+1

j

α2
j

,



164 CHAPTER 8. MEASURES OF MAXIMAL ENTROPY OF SFT

so that there exists a constant γ such that p
d
d+1

i = γαi. Consequently, if Ai,j = 1, we have:

xi,j = βγ2αiαj .

This leads to:

pi = γ1+ 1
dα

1+ 1
d

i =
n∑

j=1

xi,j =
n∑

j=1

Ai,jβγ
2αiαj .

Thus,
n∑

j=1

Ai,jαj = β−1γ
1
d
−1α

1
d
i = λα

1/d
i ,

where λ = β−1γ
1
d
−1 and the transition matrix is given by:

Qi,j =
xi,j
pi

=
αj

λα
1/d
i

,

meaning that the measure is a d-Parry measure.

8.3.4 Examples

Example 8.7. Let us consider the SFT on Fd corresponding to the Fibonacci constraint:

the alphabet is A = {0, 1} and the matrix is A =

(
1 1
1 0

)
, meaning that it is forbidden for

two consecutive nodes to be both in state 1. A d-Parry measures will be given by a transition
matrix

P =

(
α 1− α
1 0

)
, with

(
1 1
1 0

)(
α

1− α

)
= λ

(
α1/d

(1− α)1/d

)
,

where α, λ are some positive real numbers. We thus obtain: α1+1/d = (1− α)1/d, that is:

αd+1 = 1− α.

For any d ≥ 1, there exists a unique d-Parry measure, which is the Markov-multiplicative
measure defined by r(0) = α and r(1) = 1−α, where α is the unique positive solution of the
equation

αd+1 = 1− α.
For d = 1, we recover r(0) = 1

ϕ and r(1) = 1
ϕ2 .

In the case of the Fibonacci constraint, the fixed point of Prop. 8.4 is thus unique. But
the application F defined in the proof of Prop. 8.4 is not contractive, and it can have for
example orbits of period 2.

Let β ∈ (0, 1) satisfy β = (1− β)(1 + βd)d, and let α = 1/(1 + βd). If we set λ1 = β−1/d

and λ2 = α−1/d, then by construction, we have:

(
1 1
1 0

)(
α

1− α

)
= λ1

(
β1/d

(1− β)1/d

)
, and

(
1 1
1 0

)(
β

1− β

)
= λ2

(
α1/d

(1− α)1/d

)
.

For d ≤ 4, the equation β = (1 − β)(1 + βd)d has only one root, and we find α = β,
so that we recover the d-Parry measure. But for d ≥ 5, this provides periodic orbits of

period 2. Let P =

(
α 1− α
1 0

)
and P̃ =

(
β 1− β
1 0

)
be the two transition matrices, and

let π =
(

β
α+β−αβ

α−αβ
α+β−αβ

)
, as well as π̃ =

(
α

α+β−αβ
β−αβ

α+β−αβ

)
. These two probability

measures satisfy: πP = π̃ and π̃P̃ = π. Let us choose the label of a given node according to
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the probability π, and label its neighbours using the transition matrix P , and the next nodes
with P̃ , and so on, using alternatively P and P̃ . The measure obtained is Markov-uniform:
indeed, since we have both: P0,1 = P0,0P̃

d
0,0 and P̃0,1 = P̃0,0P

d
0,0, conditionally to a given

boundary, the probability to have some pattern is equal to the probability to have the “all
zero” pattern.

More generally, each time we have a periodic orbit, it provides a Markov-uniform measure,
which is not stationary in the sense that it is only left invariant by some power of the shift,
not by a single action of the shift.

Example 8.8. Let us consider the subshift on A = {1, 2, 3} defined by the transition matrix:

A =




0 1 1
1 0 1
1 0 1


 .

This matrix is not symmetric, but we can look at d-Parry measures anyway, and it will give
us Markov-uniform measures. For any d ≥ 1, an elementary solution of (8.8) is given by

the vector r =




1/3
1/3
1/3


, so that the transition matrix P =




0 1/2 1/2
1/2 0 1/2
1/2 0 1/2


 of invariant

probability π =
(
1/3 1/6 1/2

)
, defines a d-Parry measure for any d ≥ 1. Nevertheless,

the measure obtained is not an extremum of the f -invariant as defined by (8.7). Indeed, the
condition of (8.9) cannot be satisfied. If Ai,j = 1, then xi,j = πi/2, so that:

xi,j

π
2d
d+1

i

=
1

2
π

1−d
d+1

i .

If there were real β and α1, α2, α3 such that:

1

2
π

1−d
d+1

i = β
αj
αi

as soon as Ai,j = 1, it would imply α1 = α2 = α3 and π1 = π2 = π3, which is not the case.

8.4 Fundamental link with PCA

8.4.1 SFT on Z

Let us consider the nearest-neighbour SFT ΣA over the alphabet A = {1, . . . , n}, defined
by the adjacency matrix A ∈ Mn({0, 1}). We consider a PCA FA on AZ of neighbourhood
N = {0, 1} and local function fA satisfying, for i, j ∈ A such that (A2)i,j ≥ 1,

fA(i, j)(k) =
1

(A2)i,j
Ai,kAk,j

(for i, j such that (A2)i,j = 0, we do not assume anything on fA(i, j)). The value (A2)i,j is
equal to the number of letters k such that Ai,k = Ak,j = 1, that is, the number of letters k
such that ikj is an allowed pattern. By definition, the measure fA(i, j) is thus uniform on
all letters k such that ikj is allowed.

Like in Chap. 4, for symmetry, we can represent the space-time diagram of FA on a
triangular lattice. Two consecutive steps of time of the evolution of the PCA then correspond
to a labeling of the graph Γ represented on the right of Fig. 8.4. With the terminology of
Chap. 1, Sec. 1.4, we call this graph Γ the doubling graph of FA. It is one-to-one with Z.
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Let µ be the measure on AΓ corresponding to one iteration of the PCA from the measure
µ, so that in particular, the projection of µ on the top line of Γ is equal to µFA. We say that
µ corresponds to a reversible behaviour of the PCA if when reversing time (symmetry of Γ
of horizontal axis), the measure obtained still corresponds to an iteration of the PCA FA.

The next proposition indicates that the Parry measure π of ΣA, seen as a measure on Γ
by “folding the graph Z”, as suggested in Fig. 8.4, corresponds to a reversible behaviour of
the PCA FA.

µ

µFA } µ

Figure 8.4: The lattice Z, interpreted on the right as a doubling graph Γ.

Proposition 8.7. Let (Xi)i∈Z be distributed according to the Parry measure π of ΣA. Then,
the two sequences (X2i)i∈Z and (X2i+1)i∈Z have the same distribution π2, which is an invari-
ant measure of the PCA FA.

X−2

X−1

X0

X1

X2

X3

X4

X5

X6

FAFA

π2

π2

π
X−2 X−1 X0 X1 X2 X3 X4 X5 X6

Furthermore, if (Yi)i∈Z is distributed according to π2, and if (Zi)i∈Z is the image of (Yi)i∈Z
by the PCA FA, then the sequence (Yi, Zi)i∈Z is distributed according to π.

Y−1

Z−1

Y0

Z0

Y1

Z1

Y2

Z2

Y3

FAFA

π2

π2

π

Proof. Since the Parry measure is shift-invariant, the two sequences (X2i)i∈Z and (X2i+1)i∈Z
have the same distribution π2. Moreover, by Thm. 8.1, the Parry measure is a Markov
random field, so that for any a ≤ b, we have:

P((X2i)a≤i≤b = (x2i)a≤i≤b|(X2i+1)a−1≤i≤b) = (x2i+1)a−1≤i≤b))

=
b∏

i=a

P(X2i = x2i|X2i−1 = x2i−1, X2i+1 = x2i+1).

And this random field being Markov-uniform (still by Thm 8.1), the probabilities P(X2i =
x2i|X2i−1 = x2i−1, X2i+1 = x2i+1) are exactly given by fA(x2i−1, x2i+1)(x2i). It proves that
π2 is an invariant measure of FA, and that if (Yi)i∈Z is distributed according to π2, and if
(Zi)i∈Z is the image of (Yi)i∈Z by the PCA FA, then the sequence (Yi, Zi)i∈Z is distributed
according to π.

Let us come back to the fact that the Parry measure π of ΣA, seen as a measure on Γ,
corresponds to a reversible behaviour of the PCA FA. We index the sites of Γ from left to
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right by the integers (as represented with the Xi in Prop. 8.7), and define a pair potential
on Γ by

ϕn,n+1(i, j) =

{
+∞ if Ai,j = 0,

0 otherwise.

The following properties are satisfied.

• A Markov-uniform measure on the SFT ΣA is a Gibbs measure of potential ϕ.

• The Gibbs measures µ of potential ϕ, seen as measures on Γ, correspond to a reversible
behaviour of the PCA FA, see Sec. 1.4.3.

Since the Parry measure π is a Markov-uniform measure, by Thm. 8.1 (or Thm. 8.2 for the
generalisation to any dimension d ≥ 1), we obtain that seen as a measure on Γ, π corresponds
to a reversible behaviour of the PCA FA.

Example 8.9. With the notations of Chap. 4, for the Fibonacci SFT, the PCA FA obtained
is the PCA of parameters:

θ00 = 1/2 and θ01 = θ10 = θ11 = 0.

Observe that we recover the directed animal PCA of Sec. 2.3. One can check that it satisfies
the conditions of Th. 4.2 for having a Markov invariant measure.

Instead of considering Markov-uniform measures, one can also attach a weight γ(α) > 0
to each letter α of A, and look at the Markov measure π on AZ such that for a, b ∈ A,
the measure π(awb) of the words w ∈ W(A, k) such that awb ∈ W(A, k + 2) would be
proportional to

k∏

i=1

γ(wi) =
∏

α∈A
γ(α)|w|α .

It corresponds to replacing the matrix A by a matrix B defined by Bi,j = γ(i)Ai,j , and the
analogue of the Parry measure is the Markov-multiplicative measure defined by the transition
matrix:

Pi,j = Bi,j
r(j)

λr(i)
= Ai,j

γ(i)r(j)

λr(i)
,

where Br = λr and
∑n

i=1 r(i) = 1.
In terms of Gibbs measures, it amounts to consider the pair potential defined by:

ϕn,n+1(i, j) =

{
+∞ if Ai,j = 0,

− log
√
γ(i)γ(j) otherwise.

and the PCA involved satisfies

f(i, j)(k) =
1∑

`∈AAi,`A`,j γ(`)
γ(k) =

1

B2(i, j)
Bi,kBk,j .

8.4.2 SFT on Zd and on regular trees

For the generalisation to Zd and regular trees, let us consider for simplicity a SFT defined by
a symmetric adjacency matrix A. Once again, the Markov-uniform measures are the Gibbs
measures corresponding to the pair potential defined for any edge v of the graph by:

ϕv(i, j) =

{
+∞ if Ai,j = 0,

0 otherwise.



168 CHAPTER 8. MEASURES OF MAXIMAL ENTROPY OF SFT

The graph Zd as well as regular trees are bipartite graphs. If we color the sites that are
at an odd distance of the origin in black and the sites that are at an even distance of the
origin in white, we obtain two isomorphic subgraphs. Like in the case of Z, we can deform
the graph by shifting up all the black sites of one unit, and see the graph obtained as the
doubling graph Γ of a PCA (for Z2, this is represented on Fig. 8.5). The neighbourhood of a
(black) cell is the set of (white) cells to which it is connected, and the local function is such
that f((xv)v∈N ) is the uniform measure on all letters providing an allowed pattern. Again,
Markov-uniform measures of the SFT correspond to a reversible behaviour of the PCA.

Example 8.10. For the Fibonacci SFT on Z2, the neighbourhood of the PCA is of size 4,
and

f(x, y, z, t)(1) =

{
1/2 if x = y = z = t = 0,

0 otherwise.

We recover the PCA introduced by Eloranta [Elo96]. It is the two-dimensional analogue of
the directed animals PCA. No explicit form of the invariant measure is known.

Figure 8.5: The lattice Z2, interpreted on the right as a doubling graph Γ.

If we add weights γ(i) (also known as activity parameters) on the letters of the alphabet,
it amounts to considering the pair potential

ϕv(i, j) =

{
+∞ if Ai,j = 0

− log γ(i)1/kγ(j)1/k otherwise,

where k is the degree of the graph (so that k = 2d for Zd, and k = d+ 1 for Fd or Td+1), and
the corresponding PCA is such that f((xv)v∈N )(y) is proportional to γ(y) for the letters y
providing allowed patterns.

Gibbs measures on Zd are extensively studied in probability theory. Since the work of
Zachary [Zac83], Gibbs measures on trees have also given rise to many works, one motivation
being to model computer communication systems [Kel85].
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Des guirlandes d’étoiles descendaient du ciel noir au-dessus des palmiers et des
maisons.

– Albert Camus, L’exil et le royaume

In the different chapters of this thesis, we have illustrated how particular measures on
symbolic spaces with strong combinatorial structure are involved in the study of probabilistic
cellular automata and of other stochastic dynamics.

Bernoulli product measures appear naturally at the forefront. We have seen that PCA
having Bernoulli product invariant measures give rise to interesting space-time diagrams
having special properties, with weak and non-trivial correlation structure, every line being
constituted of i.i.d. random variables and PCA appearing in different directions. The dis-
cussion on Bernoulli invariant measures was carried on in Chap. 5 for deterministic CA. In
Chap. 6, Bernoulli product measures are also the natural initial measures for defining the
density classification problem on infinite lattices and trees. And of course, we meet again
Bernoulli product measures when defining the random walks of Chap. 7, and also in the
different ways to generate measures of maximal entropy presented in Chap. 8.

After Bernoulli product measures, when considering the next level of complexity, we come
across Markov measures. Space-time diagrams of PCA are always Markov random fields, as
mentioned in Chap. 1. When studying the conditions of reversibility for PCA, Markov
fields on the doubling graph corresponding to two successive time steps also appear to be
the adapted tool. In Chap. 4, we have generalised to Markov measures the approach used to
compute the image of a Bernoulli product measure by a PCA, and given a characterisation of
simple PCA having a Markov invariant measure. Some of them are related to the counting of
directed animals, which make them processes of particular interest. In Chap. 7 and Chap. 8,
a specialisation of Markov measure plays an important role: Markov-multiplicative measures,
which can be seen as product measures conditioned to avoid some patterns. More generally,
the measures that we have introduced under the name of Markov-uniform measures are the
central object of Chap. 8: they are Markov measures that are uniform on all allowed patterns,
conditionally to any fixed value of the boundary.

To summarise, these particular measures play a fundamental role. But for general PCA,
we have no simple description of the equilibrium behaviour. For example, if we consider a
PCA of alphabet A = {0, 1} and neighbourhood N = {0, 1}, defined by four parameters
θ00, θ01, θ10, θ1 giving the probabilities to obtain a 1 for the different values of the neighbour-
hood, there is no general tool to express the invariant(s) measure(s) of the PCA as a function
of these parameters.

The PCA defined by θ00 = θ01 = θ10 = a, and θ11 = 1 − a, for some a ∈ (0, 1), has
drawn a specific interest, due to a connection with directed animals and percolation theory
first noticed by Dhar [Dha83]. More specifically, determining explicitly the invariant measure
for the above PCA would enable to compute the area and perimeter generating function of
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directed animals in the square lattice, and to compute the directed site-percolation threshold
in the square lattice [BM98, LBM07, Mar12].

The theoretical understanding of the swarming model presented in Chap. 2 is also a
challenge, as is the one of the majority-flip PCA of Chap. 3. Generally, such phase transition
phenomena appear be very difficult to analyse. And the simulations are to be handled with
care, since it is extremely difficult to deal experimentally with both the infinite set of cells
and the infinite time, corresponding to the equilibrium behaviour. In particular, there are
very few known results relating the asymptotic behaviour of the restriction of a PCA to finite
windows and its asymptotic behaviour on an infinite lattice. The perfect sampling procedure
of Chap. 3 takes all its importance in that context.

In fact, if we consider a PCA defined as above by four parameters θ00, θ01, θ10, θ1, it is
not even known if such a PCA is ergodic as soon as these four values are strictly between 0
and 1 (positive-rate PCA). Since the work Gács, it is known that there exist one-dimensional
PCA with positive rates that are non ergodic [Gác86, Gác01]. But the known examples being
very complex, the positive rates problem is still open if we restrict it to elementary PCA of
alphabet and neighbourhood of size 2.

In the domain of deterministic CA, Chap. 5 leaves many open questions. We have men-
tioned the existence of surjective and state-conserving CA having no direction of equiconti-
nuity. But above all, a great challenge would be to be able to prove randomisation (or to
begin with, randomisation in Cesáro mean) for a non-affine CA.

Concerning the density classification problem of Chap. 6, the central open question is the
existence of a CA, probabilistic or deterministic, that would classify the density on Z. Let
us also mention another open problem: there is no known family of PCA able to classify
the density with an arbitrary precision on two-dimensional finite grids. We are thus in a
surprising situation:

• in one dimension, we know a simple PCA that classifies the density with an arbitrary
precision on finite rings, namely the majority-traffic PCA [Fat11, Fat13]; but the density
classification seems to be a difficult problem on the infinite lattice Z;

• in two dimensions, we know a simple CA that classifies the density on the infinite lattice
Z2, namely Toom CA; but it seems difficult to design PCA classifying the density with
an arbitrary precision on finite grids.

In Chap. 7, we have developed tools to describe the harmonic measure of a random walk
on free products of groups. Let us relax slightly that framework and consider for example the
group defined by the presentation G =< a, b, c, d|ac = ca, ad = da, bd = db >. The elements
of the group can be represented by heaps of pieces, as suggested in Fig. 8.6. The group G
is not a free product, but it is an algamated free product, which still allows to exploit some
Markov-multiplicative structure. But we are not anymore able to have a satisfactory formula
for the drift, corresponding to the growth rate of the height of the heap.

Finally, in Chap. 8, the work on subshifts of finite type defined on trees is still in progress.
In particular, we would like to have a better understanding of the f -invariant, and see if it
is related with some analogue of the topological entropy on trees.

We also wish to analyse further the connection with PCA. The initial motivation for
the work of Chap. 8 was to develop some tools that could possibly be used to obtain some
information on the measures of maximal entropy of SFT defined on Zd, d ≥ 2. Let us recall
that already for the Fibonacci on Z2, very little is known on the measure of maximal entropy,
and on the topological entropy. This remains an ambitious challenge.
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Figure 8.6: Representation of the group G =< a, b, c, d | ac = ca, ad = da, bd = db > by a
heap of pieces.
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