Automates cellulaires probabilistes et mesures spécifiques sur des espaces symboliques

Irène Marcovici LIAFA, Université Paris Diderot - Paris 7

Thèse effectuée sous la direction de Jean Mairesse

Vendredi 22 novembre 2013

4 B 6 4 B

Example of PCA

Irène Marcovici PCA and specific measures on symbolic spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example of PCA

Irène Marcovici PCA and specific measures on symbolic spaces

・ロン ・四 と ・ ヨン ・ ヨン

Example of PCA

Irène Marcovici PCA and specific measures on symbolic spaces

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Example of PCA

Irène Marcovici PCA and specific measures on symbolic spaces

イロン イロン イヨン イヨン

æ

Example of PCA

Irène Marcovici PCA and specific measures on symbolic spaces

(a)

Example of PCA

PCA of set of cells $E = \mathbb{Z}$,

イロト イポト イヨト イヨト

3

Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $\mathcal{A} = \{ \blacksquare, \Box \}$,

イロト イポト イヨト イヨト

Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $\mathcal{A} = \{ \blacksquare, \square \}$, neighbourhood $\mathcal{N} = \{0, 1\}$.

イロト イポト イヨト イヨト

Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $\mathcal{A} = \{ \blacksquare, \Box \}$, neighbourhood $\mathcal{N} = \{0, 1\}$.

イロト イポト イヨト イヨト

Local function:

$$f: \{\blacksquare, \square\}^2 \to \mathcal{M}(\{\blacksquare, \square\})$$

defined by:

$$f(\Box\Box) = \frac{1}{2}\delta_{\Box} + \frac{1}{2}\delta_{\blacksquare}$$
$$f(\Box\Box) = f(\Box\Box) = f(\Box\Box) = \delta_{\Box}$$

Example of PCA

PCA of set of cells $E = \mathbb{Z}$, alphabet $\mathcal{A} = \{ \blacksquare, \square \}$, neighbourhood $\mathcal{N} = \{0, 1\}$.

- 4 同 2 4 日 2 4 日 2

Local function:

$$f: \{\blacksquare, \square\}^2 \to \mathcal{M}(\{\blacksquare, \square\})$$

Global function:

$$F: \mathcal{M}(\{\blacksquare, \Box\}^{\mathbb{Z}}) \to \mathcal{M}(\{\blacksquare, \Box\}^{\mathbb{Z}})$$
$$\mu \mapsto \mu F$$

Definition of PCA

Let \mathcal{A} be a finite set called the alphabet.

A PCA *F* of set of cells $E = \mathbb{Z}^d$ is defined by

- a finite neighbourhood $\mathcal{N} \subset E$,
- a local function $f : \mathcal{A}^{\mathcal{N}} \to \mathcal{M}(\mathcal{A}).$

From the configuration $(x_k)_{k\in E} \in \mathcal{A}^E$, cell k is updated by the symbol y with probability:

$$f((x_{k+\nu})_{\nu\in\mathcal{N}})(\mathbf{y}),$$

simultaneously and independently of the other cells.

Motivations for the study of PCA.

$$\mathsf{PCA} = \begin{cases} \text{ synchronous analogous of interacting particle systems,} \\ \text{ natural extension of deterministic CA.} \end{cases}$$

イロト イポト イヨト イヨト

Motivations for the study of PCA.

 $\mathsf{PCA} = \begin{cases} \text{synchronous analogous of interacting particle systems,} \\ \text{natural extension of deterministic CA.} \end{cases}$

• Computer science: what can we compute in the presence of random errors?

伺下 イラト イラト

Motivations for the study of PCA.

 $\mathsf{PCA} = \begin{cases} \text{synchronous analogous of interacting particle systems,} \\ \text{natural extension of deterministic CA.} \end{cases}$

- Computer science: what can we compute in the presence of random errors?
- Modelling tool in physics and in the life sciences.

/□ ▶ < 글 ▶ < 글

Motivations for the study of PCA.

 $\mathsf{PCA} = \begin{cases} \text{synchronous analogous of interacting particle systems,} \\ \text{natural extension of deterministic CA.} \end{cases}$

- Computer science: what can we compute in the presence of random errors?
- Modelling tool in physics and in the life sciences.
- Link with different problems in probability, combinatorics, symbolic dynamics.

マロト イラト イラト

Back to the example

・ロン ・聞と ・ ヨン ・ ヨン

Back to the example

・ロン ・聞と ・ ヨン ・ ヨン

Notion of ergodicity

The system **forgets** its initial configuration. We say it is ergodic.

< 6 >

Notion of ergodicity

The system forgets its initial configuration. We say it is ergodic.

Ergodicity

A PCA F on \mathcal{A}^E is ergodic if:

- it has a **unique invariant measure** $\pi \in \mathcal{M}(\mathcal{A}^{E})$, such that $\pi F = \pi$,
- for any initial measure μ ∈ M(A^E), the sequence of iterates (μFⁿ)_{n≥0} converges weakly to π.

A (1) > A (2) > A

Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA. It is the Markov measure given by:

・吊り ・ラト ・ラト

Example of PCA

Here, we can describe explicitly the unique invariant measure π of the PCA. It is the Markov measure given by:

But for general PCA, the ergodicity is difficult to determine, and we have no expression of the invariant measure(s)!

マロト イラト イラト

Plan

• The ergodicity of CA and hence of PCA is undecidable.

Plan

The ergodicity of CA and hence of PCA is undecidable.
 We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.

A 10

一名 医下颌 医下

Plan

- The ergodicity of CA and hence of PCA is undecidable.
 We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.
- Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.

化原因 化原因

Plan

- The ergodicity of CA and hence of PCA is undecidable.
 We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.
- Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.
- Measures of maximal entropy of subshift of finite type (SFT).

伺下 イラト イラト

Plan

- The ergodicity of CA and hence of PCA is undecidable.
 We propose an efficient perfect sampling procedure for the invariant measure of an ergodic PCA.
- Inverse problems:
 - PCA having Bernoulli (or Markov) invariant measures,
 - PCA classifying the density.
- Measures of maximal entropy of subshift of finite type (SFT). They are also invariant measures of a well-suited PCA.

伺下 イラト イラト

Undecidability of the ergodicity Perfect sampling

Plan

Ergodicity and perfect sampling

 Undecidability of the ergodicity
 Perfect sampling

 PCA having a specific behaviour

 Bernoulli invariant measures
 Density classification

 Measures on subshift of finite type

 One-dimensional SFT and the Parry measure

Link with PCA

< □ > < 同 > < 回 >

Undecidability of the ergodicity Perfect sampling

Ergodicity of deterministic CA

A deterministic CA $F : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^{\mathbb{Z}^d}, \exists n \in \mathbb{N}, F^n(x) = \alpha^{\mathbb{Z}^d}.$

(4) (2) (4)

Undecidability of the ergodicity Perfect sampling

Ergodicity of deterministic CA

A deterministic CA $F : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^{\mathbb{Z}^d}, \exists n \in \mathbb{N}, F^n(x) = \alpha^{\mathbb{Z}^d}.$

Proposition [Bušić-Mairesse-M., STACS 2011 & Adv. Appl. Proba]

For deterministic CA, ergodicity \Leftrightarrow nilpotency.

Proof. \leftarrow is easy ; \Rightarrow in two steps:

- the unique invariant measure has to be a measure concentrated on a monochromatic configuration $\alpha^{\mathbb{Z}^d}$,
- 2 the convergence properties then implies the nilpotency (using [Guillon & Richard 2008], and [Salo 2012] for $d \ge 2$).

- 4 周 ト 4 戸 ト 4 戸 ト

Undecidability of the ergodicity Perfect sampling

Ergodicity of deterministic CA

A deterministic CA $F : \mathcal{A}^{\mathbb{Z}^d} \to \mathcal{A}^{\mathbb{Z}^d}$ is nilpotent if there exists $\alpha \in \mathcal{A}$ such that: $\forall x \in \mathcal{A}^{\mathbb{Z}^d}, \exists n \in \mathbb{N}, F^n(x) = \alpha^{\mathbb{Z}^d}.$

Proposition [Bušić-Mairesse-M., STACS 2011 & Adv. Appl. Proba]

For deterministic CA, ergodicity \Leftrightarrow nilpotency.

Proof. \leftarrow is easy ; \Rightarrow in two steps:

- the unique invariant measure has to be a measure concentrated on a monochromatic configuration $\alpha^{\mathbb{Z}^d}$,
- ② the convergence properties then implies the nilpotency (using [Guillon & Richard 2008], and [Salo 2012] for d ≥ 2).

Corollary (with [Kari 1992])

The ergodicity of one-dimensional deterministic CA (and hence of PCA) is undecidable.

Undecidability of the ergodicity Perfect sampling

Perfect sampling for PCA

Let *F* be an ergodic PCA of invariant measure π . In general, we have no explicit description of π .

Perfect sampling of π : probabilistic algorithm returning a sequence $a_1 \dots a_n$ with *exactly* the probability it has to appear under the measure π .

Undecidability of the ergodicity Perfect sampling

Perfect sampling for PCA

Let *F* be an ergodic PCA of invariant measure π . In general, we have no explicit description of π .

Perfect sampling of π : probabilistic algorithm returning a sequence $a_1 \dots a_n$ with *exactly* the probability it has to appear under the measure π .

Aim: simulating the behaviour of the PCA after an infinity of iterations with a (hopefully) finite-time algorithm.

・ 同 ト ・ ヨ ト ・ ヨ ト

Undecidability of the ergodicity Perfect sampling

Perfect sampling for PCA

Let *F* be an ergodic PCA of invariant measure π . In general, we have no explicit description of π .

Perfect sampling of π : probabilistic algorithm returning a sequence $a_1 \dots a_n$ with *exactly* the probability it has to appear under the measure π .

Aim: simulating the behaviour of the PCA after an infinity of iterations with a (hopefully) finite-time algorithm.

Idea: adapt the coupling from the past algorithm [Propp-Wilson 1996], with the introduction of a bounding process called the envelope PCA.

イロト イポト イラト イラト

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

A way to run a PCA (on $\mathcal{A} = \{0,1\}$) from configuration $x \in \mathcal{A}^{\mathbb{Z}}$:

- generate for each cell k independently and uniformly a random number r_k in [0, 1],
- choose the new state of the cell k to be

 $\mathbf{0}$ if $r_k < f((x_{k+\nu})_{\nu \in \mathcal{N}})(0)$, and $\mathbf{1}$ otherwise.

$$\dots$$
 x_{-3} x_{-2} x_{-1} x_0 x_1 x_2 x_3 \dots

(4月) (4月) (4月)
Undecidability of the ergodicity Perfect sampling

Update function of a PCA

A way to run a PCA (on $\mathcal{A} = \{0,1\}$) from configuration $x \in \mathcal{A}^{\mathbb{Z}}$:

- generate for each cell k independently and uniformly a random number r_k in [0, 1],
- choose the new state of the cell k to be 0 if $r_k < f((x_{k+\nu})_{\nu \in \mathcal{N}})(0)$, and 1 otherwise.

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

A way to run a PCA (on $\mathcal{A} = \{0,1\}$) from configuration $x \in \mathcal{A}^{\mathbb{Z}}$:

- generate for each cell k independently and uniformly a random number r_k in [0, 1],
- choose the new state of the cell k to be 0 if $r_k < f((x_{k+\nu})_{\nu \in \mathcal{N}})(0)$, and 1 otherwise.

It defines an update function for F, given by:

$$\phi: \mathcal{A}^{\mathbb{Z}} \times [0,1]^{\mathbb{Z}} \to \mathcal{A}^{\mathbb{Z}}$$
$$\phi(x,r)_k = \begin{cases} \mathbf{0} \text{ if } r_k < f((x_i)_{i \in k+\mathcal{N}})(\mathbf{0}) \\ \mathbf{1} \text{ otherwise.} \end{cases}$$

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

Example: $\mathcal{A} = \{0,1\}$, neighbourhood $\mathcal{N} = \{0,1\}$

Irène Marcovici PCA and specific measures on symbolic spaces

・ロン ・四と ・ヨン ・ヨン

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

Example: $\mathcal{A} = \{0,1\}$, neighbourhood $\mathcal{N} = \{0,1\}$

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

Example: $\mathcal{A} = \{0,1\}$, neighbourhood $\mathcal{N} = \{0,1\}$

Irène Marcovici PCA and specific measures on symbolic spaces

Undecidability of the ergodicity Perfect sampling

Update function of a PCA

Example: $\mathcal{A} = \{0,1\}$, neighbourhood $\mathcal{N} = \{0,1\}$

Irène Marcovici PCA and specific measures on symbolic spaces

Undecidability of the ergodicity Perfect sampling

Envelope PCA

Introduction of an envelope PCA defined on the alphabet

$$\mathcal{B} = \{\mathbf{0} = \{\mathbf{0}\}, \mathbf{1} = \{\mathbf{1}\}, \mathbf{?} = \{\mathbf{0}, \mathbf{1}\}\},\$$

to handle configurations partially known.

The update function $\tilde{\phi}$ of env(P) satisfies for $x \in \mathcal{A}^{E}$ and $y \in \mathcal{B}^{E}$, $x \in y \Rightarrow \forall r \in [0,1]^{E}, \phi(x,r) \in \tilde{\phi}(y,r).$

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

a b

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

??

(4月) (4月) (4月)

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

? ?
? ? ? (
$$r_i^1$$
) $_{0 \le i \le 2}$

- 4 周 ト 4 戸 ト 4 戸 ト

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

? 1 ? ? ? ? $(r_i^1)_{0 \le i \le 2}$

- 4 同 ト 4 ヨ ト 4 ヨ ト

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

? 1
? ? ?
$$(r_i^1)_{0 \le i \le 2}$$

? ? ? ? $(r_i^2)_{0 \le i \le 3}$

- 4 周 ト 4 戸 ト 4 戸 ト

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

(4 同) (4 回) (4 回)

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

(4月) (4日) (4日)

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

?
 1

 ?
 0
 1

$$(r_i^1)_{0 \le i \le 2}$$

 ?
 ?
 ?
 ?
 $(r_i^2)_{0 \le i \le 3}$

 ?
 ?
 ?
 ?
 ?
 $(r_i^2)_{0 \le i \le 3}$

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

?
 1

$$(r_i^1)_{0 \le i \le 2}$$

 ?
 0
 1
 $(r_i^2)_{0 \le i \le 3}$

 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

?
 1

 ?
 0
 1

$$(r_i^1)_{0 \le i \le 2}$$

 1
 ?
 ?
 0
 $(r_i^2)_{0 \le i \le 3}$

 ?
 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?
 ?

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

?
 1

 ?
 0
 1

$$(r_i^1)_{0 \le i \le 2}$$

 1
 ?
 ?
 0
 $(r_i^2)_{0 \le i \le 3}$

 ?
 ?
 ?
 ?
 ?
 ?

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

?
 1

 ?
 0
 1

$$(r_i^1)_{0 \le i \le 2}$$

 1
 ?
 ?
 0
 $(r_i^2)_{0 \le i \le 3}$

 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?

 ?
 ?
 ?
 ?
 ?

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

0	1					
1	0	1				$(r_i^1)_{0 \leq i \leq 2}$
1	1	?	0			$(r_i^2)_{0 < i < 3}$
?	0	?	1	?		$(r_i^3)_{0 \le i \le 4}^{}$
?	?	?	?	?	?	$(r_i^4)_{0 \le i \le 5}$

Undecidability of the ergodicity Perfect sampling

Coupling from the past algorithm

Let F be an ergodic PCA on $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, with $\mathcal{N} = \{0, 1\}$.

Proposition

If this algorithm stops a.s. then it samples perfectly π .

イロト イポト イラト イラト

Undecidability of the ergodicity Perfect sampling

Perfect sampling using EPCA

Proposition [Bušić-Mairesse-M., STACS 2011 & Adv. in Appl. Probab.]

The algorithm stops a.s. if and only if the EPCA is ergodic.

- If the set of cells is finite, it is the case for positive-rate PCA.
- For \mathbb{Z}^d , there exists $lpha^* \in]0,1[$ such that the EPCA is
 - ergodic if $env(f)(?^{\mathcal{N}})(?) < \alpha^*$,
 - non-ergodic if $\min_{x \in \mathcal{B}^{\mathcal{N}} \setminus \mathcal{A}^{\mathcal{N}}} \operatorname{env}(f)(x)(?) > \alpha^*$.

- 4 周 ト 4 戸 ト 4 戸 ト

Ergodicity and perfect sampling

PCA having a specific behaviour Measures on subshift of finite type Undecidability of the ergodicity Perfect sampling

The majority-flip PCA

Bernoulli invariant measures Density classification

Plan

- Ergodicity and perfect sampling

 Undecidability of the ergodicity
 Perfect sampling

 PCA having a specific behaviour

 Bernoulli invariant measures
 - Density classification
 - 3 Measures on subshift of finite type
 - One-dimensional SFT and the Parry measure
 - Link with PCA

< □ > < 同 > < 回 >

Bernoulli invariant measures Density classification

Back to elementary PCA

 $E = \mathbb{Z}$, $\mathcal{A} = \{0, 1\}$, neighbourhood of size 2.

Bernoulli invariant measures Density classification

Bernoulli invariant measures

Proposition [Belyaev and al. 1969]

The Bernoulli measure $\mu_p = \mathcal{B}(p)^{\otimes \mathbb{Z}}$ is an invariant measure of the PCA iff its transitions probabilities satisfy (at least) one of the following equalities.

$$(1-p) \cdot \theta_{00} + p \cdot \theta_{01} = (1-p) \cdot \theta_{10} + p \cdot \theta_{11} = p (1-p) \cdot \theta_{00} + p \cdot \theta_{10} = (1-p) \cdot \theta_{01} + p \cdot \theta_{11} = p$$

- 4 同 2 4 日 2 4 日 2

Bernoulli invariant measures Density classification

Bernoulli invariant measures

Proposition [Belyaev and al. 1969]

The Bernoulli measure $\mu_p = \mathcal{B}(p)^{\otimes \mathbb{Z}}$ is an invariant measure of the PCA iff its transitions probabilities satisfy (at least) one of the following equalities.

$$(1-p) \cdot \theta_{00} + p \cdot \theta_{01} = (1-p) \cdot \theta_{10} + p \cdot \theta_{11} = p$$

$$(1-p) \cdot \theta_{00} + p \cdot \theta_{10} = (1-p) \cdot \theta_{01} + p \cdot \theta_{11} = p$$

Each of these conditions implies surprising properties of the space-time diagrams.

・吊り ・ラト ・ラト

Bernoulli invariant measures Density classification

Proposition [Mairesse-M., Ann. Inst. H. Poincaré Probab. Statist.]

When both conditions are satisfied,

• all the lines of the space-time diagram are i.i.d.

Proposition [Mairesse-M., Ann. Inst. H. Poincaré Probab. Statist.]

When both conditions are satisfied,

- all the lines of the space-time diagram are i.i.d.
- the PCA appears in three directions

Proposition [Mairesse-M., Ann. Inst. H. Poincaré Probab. Statist.]

When both conditions are satisfied,

- all the lines of the space-time diagram are i.i.d.
- the PCA appears in three directions
- three points are independent unless they form an equilateral triangle pointing up.

Bernoulli invariant measures Density classification

Example 1

The choice $heta_{01}= heta_{10}=s$ and $heta_{00}= heta_{11}=1-s$ corresponds to

$$f(x,y) = s \cdot \delta_{x+y \mod 2} + (1-s) \cdot \delta_{x+y+1 \mod 2}$$

The measure $\mu_{1/2}$ is invariant.

(s=3/4)

Bernoulli invariant measures Density classification

For every $p \in [0, 1/2]$, one can set

Example 2

$$heta_{01}= heta_{10}=0, \quad heta_{11}=1 \;\; {
m and} \;\; heta_{00}=p/(1-p).$$

This PCA forbids elementary triangles (pointing up) having a single 0.

Bernoulli invariant measures Density classification

Larger alphabet

Alphabet
$$\mathcal{A} = \{0, \dots, n\}$$
.
 $\theta_{ij}^k = \text{probability to get } k \text{ if the neighbourhood is in state } ij$.

Proposition [Mairesse-M., Ann. Inst. H. Poincaré Probab. Statist.]

The Bernoulli measure μ_p $(p = (p_0, ..., p_n))$ is invariant if one of the following conditions is satisfied.

$$orall i \in \mathcal{A}, orall k \in \mathcal{A}, \sum_{j \in \mathcal{A}} p_j \; heta_{ij}^k = p_k$$

$$\forall j \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{i \in \mathcal{A}} p_i \; \theta_{ij}^k = p_k$$

Same properties of space-time diagrams.

イロト イポト イヨト イヨト

Bernoulli invariant measures Density classification

Larger alphabet

Alphabet
$$\mathcal{A} = \{0, \dots, n\}$$
.
 $\theta_{ij}^k = \text{probability to get } k \text{ if the neighbourhood is in state } ij$.

Proposition [Mairesse-M., Ann. Inst. H. Poincaré Probab. Statist.]

The Bernoulli measure μ_p $(p = (p_0, \dots, p_n))$ is invariant if one of the following conditions is satisfied.

$$orall i \in \mathcal{A}, orall k \in \mathcal{A}, \sum_{j \in \mathcal{A}} p_j \; heta_{ij}^k = p_k$$

$$\forall j \in \mathcal{A}, \forall k \in \mathcal{A}, \sum_{i \in \mathcal{A}} p_i \; \theta_{ij}^k = p_k$$

Same properties of space-time diagrams.

Remark: the deterministic CA that we recover are permutative CA.

Bernoulli invariant measures Density classification

The density classification problem

Irène Marcovici PCA and specific measures on symbolic spaces

Bernoulli invariant measures Density classification

The density classification problem

$$E = \mathbb{Z}^d$$
, $\mathcal{A} = \{0, 1\}$.

We still denote by μ_p the Bernoulli measure of parameter p.

Challenge

The *density classification problem* consists in finding a (P)CA or an IPS F, such that:

$$\begin{cases} \rho < 1/2 \implies \mu_{\rho} \mathsf{F}^{t} \xrightarrow[t \to \infty]{t \to \infty} \delta_{\underline{0}}, \\ \rho > 1/2 \implies \mu_{\rho} \mathsf{F}^{t} \xrightarrow[t \to \infty]{w} \delta_{\underline{1}}. \end{cases}$$

< A >

一名 医下口 医下

Bernoulli invariant measures Density classification

 $\frac{w}{t \to \infty}$

 $\frac{w}{t \rightarrow \infty}$

p=0.2

イロト イロト イヨト イヨト

2

p=1

Ergodicity and perfect sampling PCA having a specific behaviour

Density classification

w

p=0.49

2

p=1

Bernoulli invariant measures Density classification

A solution on \mathbb{Z}^2

Definition of Toom's CA

Toom's CA is the CA \mathcal{T} on \mathbb{Z}^2 of neighborhood $\mathcal{N} = \{(0,0), (0,1), (1,0)\}$ (north-east-center) defined by the majority rule, that is,

$$(\mathcal{T}(x))_{i,j} = \operatorname{maj}(x_{i,j}, x_{i,j+1}, x_{i+1,j}).$$

<ロ> (日) (日) (日) (日) (日)

Proposition [Bušić-Fatès-Mairesse-M., LATIN 2012 & Electron. J. Probab. 2013]

Toom's rule classifies the density.

Bernoulli invariant measures Density classification

The proof in pictures

< A >

-

B> B

Bernoulli invariant measures Density classification

The proof in pictures

< A >

-

э

Bernoulli invariant measures Density classification

The proof in pictures

Image: Image:

- ∢ ≣ →

< ∃⇒

Bernoulli invariant measures Density classification

The proof in pictures

< □ > < A > >

-∢ ≣ ≯

-∢ ≣ →

Bernoulli invariant measures Density classification

The proof in pictures

< □ > < A > >

-

э

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< A >

-

э

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< □ > < A > >

-∢ ≣ →

э

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< □ > < A > >

- + ≣ →

< ∃⇒

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< A >

Bernoulli invariant measures Density classification

The proof in pictures

< 6 >

→ Ξ →

э

Bernoulli invariant measures Density classification

The proof in pictures

< 17 ▶

- + ≣ →

э

Bernoulli invariant measures Density classification

The proof in pictures

Image: Image:

- ∢ ≣ ≯

э

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< □ > < 同 > < 回 > <

э

Bernoulli invariant measures Density classification

The proof in pictures

< □ > < 同 > < 回 > <

э

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

< □ > < 同 > < 回 > <

э

Bernoulli invariant measures Density classification

The proof in pictures

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

イロト イポト イヨト イヨト

Bernoulli invariant measures Density classification

The proof in pictures

Irène Marcovici PCA and specific measures on symbolic spaces

イロト イポト イヨト イヨト

Bernoulli invariant measures Density classification

The proof in pictures

э

イロト イポト イヨト イヨト

Bernoulli invariant measures Density classification

The proof in pictures

Bernoulli invariant measures Density classification

Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

イロト イポト イヨト イヨト

Bernoulli invariant measures Density classification

Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

• If p < 1/2, there exists a.s. no infinite 1-cluster (classical result of percolation theory)

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Bernoulli invariant measures Density classification

Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If p < 1/2, there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

Bernoulli invariant measures Density classification

Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If p < 1/2, there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge
- Any finite 1-cluster disappears in finite time and always stays in its enveloping rectangle

(4 同) (4 回) (4 回)

Bernoulli invariant measures Density classification

Steps of the proof

Add NW-SE diagonals to the grid, and consider the triangular lattice obtained.

- If p < 1/2, there exists a.s. no infinite 1-cluster (classical result of percolation theory)
- Two different 1-clusters cannot merge
- Any finite 1-cluster disappears in finite time and always stays in its enveloping rectangle
- A given point belongs a.s. to the enveloping rectangle of an at most finite number of 1-clusters (by the exponential decay of the size of 1-clusters)

Bernoulli invariant measures Density classification

Summary

	7./ n7.	77.	\mathbb{Z}^d $d > 2$	Tree
			\square , $u \ge z$	$T_n, n \geq 3$
CA	No perfect solution, good performances of GKL (huge literature)		Toom's rule No symmetric majority	Asymmetric majority
PCA	Arbitrary good precision with Majority-traffic No perfect solution		Toom's rule	Asymmetric majority
IPS	No perfect solution		Modified Toom's rule	Asymmetric majority

æ

Bernoulli invariant measures Density classification

Summary

	$\mathbb{Z}/n\mathbb{Z}$	Z	\mathbb{Z}^d , $d \geq 2$	Tree
	/)	$I_n, n \geq 3$
CA	No perfect solution, good performances of GKL (huge literature)	GKL? Kari-traffic?	Toom's rule No symmetric majority	Asymmetric majority
PCA	Arbitrary good precision with Majority-traffic No perfect solution	GKL? Kari-traffic? Maj-traffic?	Toom's rule	Asymmetric majority
IPS	No perfect solution	Example conjectured by Cox&Durrett?	Modified Toom's rule	Asymmetric majority

æ

Bernoulli invariant measures Density classification

Summary

	$\mathbb{Z}/n\mathbb{Z}$	Z	$\mathbb{Z}^d, d \geq 2$	Tree $T_n n \ge 3$
СА	No perfect solution, good performances of GKL (huge literature)	GKL? Kari-traffic?	Toom's rule No symmetric majority	Asymmetric majority
PCA	Arbitrary good precision with Majority-traffic No perfect solution	GKL? Kari-traffic? Maj-traffic?	Toom's rule Symmetric rule?	Asymmetric majority Symmetric rule?
IPS	No perfect solution	Example conjectured by Cox&Durrett?	Modified Toom's rule Symmetric rule?	Asymmetric majority Symmetric rule?

æ
Bernoulli invariant measures Density classification

Summary

	7. / n7.	77.	$\mathbb{Z}^d d > 2$	Tree
		<i>U_A</i>	<i>□</i> , u <u><</u> 2	$T_n, n \geq 3$
CA	No perfect solution, good performances of GKL (huge literature)	GKL? Kari-traffic?	Toom's rule No symmetric majority	Asymmetric majority
PCA	Arbitrary good precision with Majority-traffic No perfect solution	GKL? Kari-traffic? Maj-traffic?	Toom's rule Symmetric rule?	Asymmetric majority Symmetric rule?
IPS	No perfect solution	Example conjectured by Cox&Durrett?	Modified Toom's rule Symmetric rule?	Asymmetric majority Symmetric rule?

Link with the positive rate problem.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

æ

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Plan

Ergodicity and perfect sampling

- Undecidability of the ergodicityPerfect sampling
- PCA having a specific behaviour
 - Bernoulli invariant measures
 - Density classification
- 3 Measures on subshift of finite type
 - One-dimensional SFT and the Parry measure
 - Link with PCA

Image: A image: A

Ergodicity and perfect sampling PCA having a specific behaviour Measures on subshift of finite type PCA having a specific behaviour Perspectives and works in progress

Motivation: understanding the combinatorics of multi-dimensional SFT, being able to generate patterns "uniformly".

イロト イポト イヨト イヨト

Ergodicity and perfect sampling PCA having a specific behaviour Measures on subshift of finite type PCA having a specific behaviour Measures on subshift of finite type

Motivation: understanding the combinatorics of multi-dimensional SFT, being able to generate patterns "uniformly".

Example: two-dimensional Fibonacci SFT

Set of configurations without two consecutive black squares, vertically or horizontally.

▲ 同 ▶ ▲ 国 ▶ ▲ 国 ▶

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

One-dimensional subshift of finite type

Let \mathcal{A} be an alphabet with *n* letters, and let $A \in \mathcal{M}_n(\{0,1\})$.

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

One-dimensional subshift of finite type

Let \mathcal{A} be an alphabet with n letters, and let $A \in \mathcal{M}_n(\{0,1\})$.

Subshift of finite type

The subshift of finite type associated to A is the set Σ_A of words $w \in \mathcal{A}^{\mathbb{Z}}$ such that if $A_{i,j} = 0$, w does not contain the pattern ij.

$$A_{i,j} = \begin{cases} 1 \text{ if } ij \text{ is an allowed pattern,} \\ 0 \text{ if } ij \text{ is a forbidden pattern.} \end{cases}$$

$$\Sigma_{\mathcal{A}} = \{ w \in \mathcal{A}^{\mathbb{Z}}; \forall k \in \mathbb{Z}, \mathcal{A}_{w_k, w_{k+1}} = 1 \}.$$

→ Ξ →

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

The Parry measure

The Parry measure

Let λ be the Perron value of the matrix A (assumed to be irreducible and aperiodic), and let r be the right-eigenvector associated to λ , satisfying $\sum_{i=1}^{n} r_i = 1$. The *Parry measure* is the Markov measure π of transition matrix P defined, for any $i, j \in A$, by

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.$$

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

The Parry measure

The Parry measure

Let λ be the Perron value of the matrix A (assumed to be irreducible and aperiodic), and let r be the right-eigenvector associated to λ , satisfying $\sum_{i=1}^{n} r_i = 1$. The *Parry measure* is the Markov measure π of transition matrix P defined, for any $i, j \in A$, by

$$P_{i,j} = A_{i,j} \frac{r_j}{\lambda r_i}.$$

The Parry measure is Markov-uniform: for a given $k \ge 1$, the value $\pi(awb)$ does not depend of the word $w \in \{1, \ldots, n\}^k$ such that *awb* is allowed.

- 4 周 ト 4 戸 ト 4 戸 ト

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Measure of maximal entropy

Theorem

Let \mathcal{M}_{Σ_A} be the set of translation invariant measures on the SFT Σ_A , and let $\pi \in \mathcal{M}_{\Sigma_A}$. The following properties are equivalent. (i) π is the Parry measure associated to Σ_A , (ii) π is a Markov-uniform measure on Σ_A , (iii) π is the measure of maximal entropy of Σ_A .

(4月) (4月) (4月)

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Example: Fibonacci SFT

Let $\mathcal{A} = \{0, 1\}$. The one-dimensional Fibonacci SFT is the set of words that do not contain two consecutive 1's. It is given by:

$$A = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}$$

Its Parry measure is the Markov measure given by

with
$$\pi_0 = rac{arphi^2}{1+arphi^2}$$
 and $\pi_1 = rac{1}{1+arphi^2}$.

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

First way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability $r_0 = \frac{1}{\varphi}$ and a 1 with probability $r_1 = \frac{1}{\varphi^2}$,
- rejecting the 1's creating forbidden patterns.

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

First way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability $r_0 = \frac{1}{\varphi}$ and a 1 with probability $r_1 = \frac{1}{\varphi^2}$,
- rejecting the 1's creating forbidden patterns.

Lemma [M. 2013]

For any SFT, the Parry measure can be generated by independent draws of letters, with reject of a letter if it creates a forbidden pattern.

イロト イポト イラト イラト

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Second way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1's.

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Second way to generate the Parry measure

The Parry measure of Fibonacci SFT can be generated by:

- choosing independently to write a 0 with probability $\tilde{r}_0 = \frac{1}{\varphi^2}$ and a 1 with probability $\tilde{r}_1 = \frac{1}{\varphi}$,
- deleting pairs of consecutive 1's.

Proposition [M. 2013]

For *confluent SFT*, the Parry measure can be generated by independent draws of letters and deletion of forbidden patterns.

- 4 周 ト 4 戸 ト 4 戸 ト

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Link with PCA

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

$$\pi \xrightarrow{X_{-2}} X_{-1} \xrightarrow{X_0} X_1 \xrightarrow{X_2} X_3 \xrightarrow{X_4} X_5 \xrightarrow{X_6}$$

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Link with PCA

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

$$\pi \circ \underbrace{X_{-2}}_{\bullet} \underbrace{X_{-1}}_{\bullet} \underbrace{X_0}_{\bullet} \underbrace{X_1}_{\bullet} \underbrace{X_2}_{\bullet} \underbrace{X_3}_{\bullet} \underbrace{X_4}_{\bullet} \underbrace{X_5}_{\bullet} \underbrace{X_6}_{\bullet} \underbrace{X_6}_{\bullet}$$

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability 1/2.

By the Markov-uniform property, the new sequence is still distributed according to π .

(4月) (4月) (4月)

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Link with PCA

Consider a configuration distributed according to the Parry measure π of the Fibonacci SFT.

$$\pi \circ \underbrace{X_{-2}}_{\bullet} \underbrace{X_{-1}}_{\bullet} \underbrace{X_0}_{\bullet} \underbrace{X_1}_{\bullet} \underbrace{X_2}_{\bullet} \underbrace{X_3}_{\bullet} \underbrace{X_4}_{\bullet} \underbrace{X_5}_{\bullet} \underbrace{X_6}_{\bullet} \underbrace{X_6}_{\bullet}$$

For all $i \in \mathbb{Z}$, if $X_{2i} = X_{2i+2} = 0$, we flip the value of X_{2i+1} with probability 1/2.

By the Markov-uniform property, the new sequence is still distributed according to π .

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Link with PCA

The projection π_2 of the Parry measure on odd (resp. even) sites is an invariant measure of the PCA.

< A >

-

Extension

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

The analogous result holds for any SFT in dimension 1 or in higher dimension.

One-dimensional SFT and the Parry measure Link with PCA Perspectives and works in progress

Perspectives and works in progress

< 17 > <

Ergodicity and perfect sampling PCA having a specific behaviour Measures on subshift of finite type PCA having a specific behaviour Measures on subshift of finite type

• Random walks on free products of groups (with J. Mairesse)

 $\mathbb{Z}^2 * \mathbb{Z}$

< □ > < A > >

Study of the limit measure

 $\mathbb{Z}/2\mathbb{Z} * \mathbb{Z}/3\mathbb{Z}$

- Ergodicity and perfect sampling PCA having a specific behaviour Measures on subshift of finite type PCA having a specific behaviour Measures on subshift of finite type
- Random walks on free products of groups (with J. Mairesse)
- Generalisation of the Parry measure to SFT defined on infinite trees (with V. Delecroix)

Ergodicity and perfect sampling
PCA having a specific behaviourOne-dimensional SFT and the Parry measure
Link with PCAMeasures on subshift of finite typePerspectives and works in progress

- Random walks on free products of groups (with J. Mairesse)
- Generalisation of the Parry measure to SFT defined on infinite trees (with V. Delecroix)
- Deterministic CA and Bernoulli invariant measures Rigidity and randomisation (with B. Hellouin de Menibus, A. Maass, M. Sablik)

Irène Marcovici PCA and specific measures on symbolic spaces

- Ergodicity and perfect sampling PCA having a specific behaviour Measures on subshift of finite type PCA having a specific behaviour Measures and works in progress
- Random walks on free products of groups (with J. Mairesse)
- Generalisation of the Parry measure to SFT defined on infinite trees (with V. Delecroix)
- Deterministic CA and Bernoulli invariant measures Rigidity and randomisation (with B. Hellouin de Menibus, A. Maass, M. Sablik)
- Ergodicity of this PCA for large values of *p*. Work related to the study of a "percolation game" (with J. Martin)

