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CELLULAR AUTOMATA AND SELF-ORGANISATION PHENOMENA

Irène Marcovici1

Abstract. Cellular automata are dynamical systems for which time and space are discrete. They are
used to model the evolution of a set of components, the cells, that interact locally with each other: over
time, each cell updates its state according to what it perceives in its neighbourhood. Some cellular
automata exhibit a self-organisation behaviour: from an initial disordered state, successive updates of
the cells by the local rule lead to the emergence of a macroscopic structure. Conversely, given a de-
sired global behaviour, we can ask ourselves which local rules allow to achieve this collective behavior,
in a decentralised way. In this article, we will address several such inverse problems (synchronisa-
tion, density classification, self-correction of tilings), and study the influence that the introduction of
randomness can have on the dynamics.

Résumé. Les automates cellulaires sont des systèmes dynamiques pour lesquels le temps et l’espace
sont discrets. Ils permettent de modéliser l’évolution d’un ensemble de composantes, les cellules,
interagissant entre elles de manière locale : au cours du temps, chacune actualise son état en fonction
de ce qu’elle perçoit dans son voisinage. Certains automates cellulaires exhibent des comportements
d’auto-organisation : à partir d’un état initial désordonné, les mises à jour successives des cellules par
la règle locale conduisent à l’apparition d’une structure macroscopique. À l’inverse, si l’on souhaite
parvenir à un certain comportement global, on peut se demander quelles règles locales permettent de
l’atteindre de manière décentralisée. Dans cet article, nous présenterons plusieurs problèmes inverses de
ce type (synchronisation, classification de la densité, auto-correction de pavages), en étudiant l’influence
que peut avoir l’introduction d’aléa dans les dynamiques.

Introduction

Self-organisation phenomena are frequent in nature. A striking example is the formation of flocks of birds:
despite the absence of a central authority, the birds manage to agree on a common flight direction, by collecting
local information on the flight direction of their neighbours. A recent work has also shown that the patterns
appearing on some lizard skins are formed through a similar mechanism, in a completely decentralised way [11],
and that is just one more of many examples. Cellular automata provide a simple computational model to
explore these self-organisation phenomena: we consider a set of entities, the cells, arranged on a lattice, and we
assume that the states of these cells evolve over time according to a local rule that only depends on the states of
a few of their neighbours. To simplify things even further, we suppose that the number of possible cell states is
finite, and that all cells are updated simultaneously, in discrete time. We will propose several examples showing
that it is possible to reproduce some self-organisation phenomena in this artificial framework. The objective is
to extract some elementary mechanisms leading to such behaviours, with the ambition of being able to exploit
them in concrete contexts. The general spirit of the problem is that of distributed computing: gathering a global
information by exchanging only local information. Indeed, many computer networks operate in a distributed
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manner, without a central authority, and require the implementation of a form of collective regulation, based
on local interactions.

In the present article, we will investigate different inverse problems. The approach is as follows: given a
certain self-organisation phenomenon, we look for a cellular automaton, as simple as possible, allowing us to
achieve this behaviour from a disordered initial state. We will see that introducing some randomness in the
local interactions facilitates the implementation of self-organisation phenomena.

In Section 1, we first define cellular automata and introduce some terminology and notations. Then in
Section 2, we present two well-known inverse problems defined on finite rings: the synchronisation problem and
the density classification. In Section 3, we focus on the self-stabilisation of infinite two-dimensional tilings. The
article ends with some remarks and perspectives in Section 4.

1. Definition of cellular automata

Let us start by defining cellular automata in a more formal way. We consider a lattice L, which is usually
chosen as the infinite grid Zd or as a finite set of the form Zn1

× · · · × Znd
, where Zn = Z/nZ. We also fix a

finite set S, which can be seen as a finite set of colours. The elements of SL then correspond to colourings of
the cells of the grid L with colours from S, and are called configurations.

For a given integer m ≥ 1 and a family of m elements n1, . . . , nm ∈ L, let us consider a function f : Sm → S.
The cellular automaton of neighbourhoood N = {n1, . . . , nm} and of local rule f is then the function F : SL → SL

defined, for any x ∈ SL and k ∈ L, by

F (x)k = f(xk+n1
, . . . , xk+nm

).

In order to determine the new colour F (x)k of cell k in the configuration F (x), we thus look at the colours of
the neighbouring cells k+ n1, . . . , k+ nm in the configuration x, and then apply the local rule f to the pattern
observed.

Probabilistic cellular automata are an extension of cellular automata for which the local function f is no
more with values in S but in the set M(S) of probability distributions on S. For (a1, . . . , am) ∈ Sm and
s ∈ S, the value f(a1, . . . , am)(s) then gives the probability to update a cell by the value s if its neighbourhood
is in state (a1, . . . , am). As previously, all the cells are updated in a synchronous way, and conditionally on
the configuration, the updates are made independently for different cells. A probabilistic cellular automaton
can thus be seen as a Markov chain on SL. We refer to the work of Mairesse and Marcovici for a survey on
probabilistic cellular automata [10].

In the next section, we will consider deterministic and probabilistic cellular automata defined on one-
dimensional finite lattices with periodic boundary conditions, that is, on L = Zn for some n ≥ 1, where
we recall that Zn = Z/nZ. This amounts to assuming that the cells are arranged along a ring of size n.

2. Inverse problems on finite rings: the power of randomness

In this section, we will introduce and study two inverse problems. In both cases, we will assume that we have
at our disposal a finite number of cells arranged on a ring L = Zn, and that the cells can only take two states:
0 and 1. We denote by 0Zn the configuration where all cells are in state 0, and by 1Zn the configuration where
all cells are in state 1.

2.1. The synchronisation problem

The synchronisation problem consists in designing a binary cellular automaton such that after some time, the
cells are alternately all in state 0, then all in state 1, then all in state 0, etc. The aim is thus to give a same local
instruction to all the cells, so that they all reach a regime where they alternate in a perfectly synchronous way
between state 0 and state 1. The desired behaviour can be interpreted as a digital replica of the synchronisation
of metronomes: just as metronomes placed on a board eventually synchronise to beat at exactly the same tempo,
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we would like the cellular automaton to allow the cells to reach a perfect synchronisation, whatever the size of
the ring and the initial configuration.

Formally, we give the following definition.

Definition 2.1. A one-dimensional cellular automaton F on S = {0, 1} is said to synchronise finite configura-
tions if for any ring size n ≥ 1,

∀x ∈ SZn , ∃T ≥ 1, ∀k ≥ 0,

{
FT+2k(x) = 0Zn

FT+2k+1(x) = 1Zn
.

In the context of probabilistic cellular automata, we ask the same property to be satisfied, with a time T almost
surely finite.

In fact, if we restrict ourselves to a deterministic framework, it is not possible to find a solution, as shown
by the following proposition.

Proposition 2.2. There exist no deterministic cellular automaton that synchronises finite configurations.

Proof. In order to prove this result, we will use an argument due to Richard [12], showing that for any cellular
automaton, there exists a configuration that is rotated indefinitely on the ring under the action the cellular
automaton. From such a configuration, one can never reach the alternation between configurations 0Zn and 1Zn .

Let F be a one-dimensional cellular automaton. We can assume without loss of generality that N =
{−r, . . . , r} for some r ≥ 1, so that F has a local function f : {0, 1}2r+1 → {0, 1}. Let us introduce suc-
cessively the values:

x0 = f(0, . . . , 0), x1 = f(0, . . . , 0, x0), x2 = f(0, . . . , 0, x0, x1), etc.

Precisely, for i ≤ 2r, we have xi = f(0, . . . , 0, x0, x1, . . . , xi−1), and for i ≥ 2r + 1, xi = f(xi−2r−1, . . . , xi−1).
Since the xi can only take values 0 and 1, there exist integers m < ℓ such that (xm, . . . , xm+2r) = (xℓ, . . . , xℓ+2r).
Now, consider the configuration

xmxm+1 . . . xℓ−1 ∈ {0, 1}Zℓ−m .

By definition of the sequence (xk)k≥0, its image by F is the sequence

xm+r+1xm+r+2 . . . xℓ+r = σr+1(xmxm+1 . . . xℓ−1),

where σ denotes the shift map on {0, 1}Zℓ−m . So, on a ring of size ℓ − m, starting from the configuration
xmxm+1 . . . xℓ−1, this configuration will be shifted indefinitely by r + 1 cells and we will never achieve the
desired synchronisation behaviour. □

However, if we allow probabilistic updates, a simple solution exists: it is a probabilistic cellular automaton
with a neighbourhood of size 2, for which the local rule consists in selecting the value of the cell or of its
right-hand neighbour with probability 1/2 each, and in changing the value that has been read. Thus, if the two
cells are in the same state i, the new state is 1− i, while if they are in different states, the new state is drawn
uniformly between 0 and 1. The following statement formalises this result.

Proposition 2.3. The probabilistic cellular automaton of neighbourhood N = {0, 1} and local rule

f(i, j) =
1

2
δ1−i +

1

2
δ1−j ,

synchronises finite configurations.
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Figure 1. Example of space-time diagram of the synchronising probabilistic cellular automa-
ton of Proposition 2.3. The initial configuration is represented at the bottom and time goes
upwards.

Proof. According to the local rule, ranges of 0’s (resp. 1’s) are deterministically transformed into ranges of 1’s
(resp. 0’s). Therefore, only the interfaces between ranges of 0’s and ranges of 1’s behave randomly, and it can
be seen that when iterating the probabilistic cellular automaton, these interfaces follow independent random
walks: precisely, each interface moves one step to the left with probability 1/2, and stays in the same position
with probability 1/2, see Figure 1 for an illustration. Since the ring size is finite, the interfaces eventually merge:
we have a Markov chain with finite state space {0, 1}Zn , and the cycle between the two configurations 0Zn and
1Zn is the unique absorbant cycle. □

In fact, any probabilistic cellular automaton such that f(0, . . . , 0) = δ1, f(1, . . . , 1) = δ0, and such that the
other transitions assign a positive probability to 0 and to 1, provides a solution to the synchronisation problem.
But the advantage of the rule above is that the expected convergence time is quadratic. It is an open question
to know whether there exists a probabilistic cellular automaton that converges more rapidly.

2.2. The density classification problem

The density classification problem consists in deciding, in a decentralised way, if an initial configuration
contains more 0’s or more 1’s. More precisely, the goal is to design a probabilistic cellular automaton whose
trajectories converge to 0Zn or to 1Zn , if the initial configuration contains more 0’s or more 1’s, respectively.

For a configuration x ∈ {0, 1}Zn , we denote by ρ(x) the proportion of 1’s in x, that is, ρ(x) = |x|1/n, where
|x|1 =

∑n
i=1 1xi=1.

Definition 2.4. A one-dimensional cellular automaton F on S = {0, 1} is said to classify the density of finite
configurations if for any ring size n ≥ 1,

∀x ∈ SZn ,

{
ρ(x) > 1/2 =⇒ ∃T ≥ 1, ∀k ≥ T, F k(x) = 1Zn

ρ(x) < 1/2 =⇒ ∃T ≥ 1, ∀k ≥ T, F k(x) = 0Zn
.

In the context of probabilistic cellular automata, we ask the same property to be satisfied, with a time T almost
surely finite.
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The difficulty is twofold: first, it is impossible to centralise the information (cells are indistinguishable);
second, it is impossible to use classical counting techniques (cells contain only binary information). Here, one
can prove that there is no perfect solution to the density classification problem, even if we allow probabilistic
updates.

Proposition 2.5. There exist no (probabilistic) cellular automaton that classifies the density of finite configu-
rations.

This proposition was first proved by Land and Belew in the deterministic setting [9], and then simplified and
extended by Bušić et al. [1].

Sketch of the proof. We give a sketch of the proof of Bušić et al. [1]. Let us assume that the (probabilistic)
cellular automaton F classifies the density. Then, there exists an integer n and a configuration x ∈ SZn such that
n
2 < |x|1, and such that the event |x|1 < |F (x)|1 has positive probability. Now, let us consider a configuration
y of the form

y =

k︷ ︸︸ ︷
x x . . . x
← kn →

m︷ ︸︸ ︷
0 0 . . . 0
← m →

,

for some integers k,m ≥ 1. We can adjust k and m in order to construct a configuration y ∈ SZkn+m such
that ρ(y) < 1

2 , and such that the event ρ(F (y)) > 1
2 has positive probability. This contradicts the fact that F

classifies the density. □

Nevertheless, as shown by Fatès [3] the introduction of randomness expands the possibilities compared to the
deterministic framework. Indeed, a probabilistic combination of two deterministic cellular automata, namely
the traffic rule and the majority rule, allows us to solve the density classification problem with an arbitrary
precision. Let us go into more detail. The traffic rule, known as rule 184 in Wolfram’s classification, is a
rudimentary model describing the progression of vehicles along a road: 1’s represent vehicles, and at each time
step, all vehicles with an empty cell in front of them move rightwards. This defines a one-dimensional cellular
automaton with radius 1, that is, with neighbourhood N = {−1, 0, 1}, whose local rule can be represented as
follows:

traf(x, y, z) 1 0 1 1 1 0 0 0
x y z 111 110 101 100 011 010 001 000

.

It is a conservative cellular automaton: the numbers of 0’s and 1’s are preserved through the evolution. We also
consider the majority rule of radius 1, whose local rule maj outputs the symbol which is in majority among the
three input symbols:

maj(x, y, z) 1 1 1 0 1 0 0 0
x y z 111 110 101 100 011 010 001 000

.

Now, the majority-traffic cellular automaton of parameter α ∈ (0, 1) is the probabilistic cellular automaton
of local rule:

f(x, y, z) = α δmaj(x,y,z) + (1− α) δtraf(x,y,z).

In other words, at each time step, we choose, independently for each cell, to apply the majority rule with
probability α and the traffic rule with probability 1− α.

Proposition 2.6. Let n ≥ 1. For any ε ∈ (0, 1), there exists αn ∈ (0, 1) such that for any configuration
x ∈ {0, 1}Zn , the majority-traffic probabilistic cellular automaton classifies correctly the density of configuration x
with probability larger than 1− ε.

Proof. We give a sketch of the proof given by Fatès [3]. It is based on the following property of the traffic
cellular automaton: if the initial configuration contains a majority of 1’s (resp. 0’s), then after less than n
iterations, the configuration does not contain anymore two consecutive 0’s (resp. 1’s). Now, if α is sufficiently
close to 0, then with high probability, the first steps of majority-traffic will be the same as if we had iterated
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Figure 2. Examples of space-time diagrams of the traffic cellular automaton (left) and of
majority-traffic (right), from a same initial configuration represented at the bottom, that con-
tains a majority of 0’s (white cells).

the deterministic traffic cellular automaton, so that we will have reached a configuration where there is no two
consecutive occurrences of the minority state. To conclude, one just has to observe that such a configuration
is well classified with probability 1 by majority-traffic: the applications of the majority rule can only make the
configuration evolve to the wanted fixed point. An illustration is given in Figure 2. □

However, note that lowering the value of the parameter αn improves the quality of the result, but at the cost
of increasing the system response time.

3. Self-stabilisation of tilings on the infinite lattice

In this section, we consider another inverse problem, now defined on infinite lattices. To simplify the pre-
sentation, we will focus on the two-dimensional case, and explore the phenomenon of self-stabilisation in the
context of cellular automata which operate on two-dimensional tilings. To illustrate the problem, imagine that
an artist has a plan to create a two-dimensional tiling with square tiles having a colour on each side, with the
constraint that two adjacent tiles must share the same colour on their adjacent side (they are known as Wang
tiles). When this tiling is realised, the artist realises that (a) some mistakes have occurred during the tiling
process and (b) the original tiling plan has been lost. In this context, is it possible to correct the tiling to respect
the constraints of adjacency of colours only by following local rules? In other words, given a finite set of local
constraints, we seek a cellular automaton such that, starting from a finite perturbation of a valid configuration,
the cellular automaton must eventually fall back into the space of valid configurations where it remains still.
Precisely, we require our cellular automaton to have the following form of self-stabilisation.

(1) Starting from a configuration that deviates from a legal configuration only on a finite region, the cellular
automaton must evolve back to a legal configuration in a finite number of steps.

(2) Starting from a legal configuration, the cellular automaton must remain unchanged.
Again, the difficulty is that the cells are indistinguishable and the information available to each cell is limited
to the state of its close neighbours.

Self-stabilisation is a property omnipresent in biological systems. Indeed, living cells always need to correct
their defects in order to keep their behaviour as stable as possible. The present questioning is a modest step
aimed at trying to reproduce this phenomenon in a simplified way in an artificial context.

The main reference for this section is our work on self-stabilisation [5], in which we studied this problem
from different angles, looking for both deterministic and probabilistic solutions. However, in the context of
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the present article, we will only give a short presentation of some of the points raised in the article, avoiding
technicalities.

3.1. Self-stabilisation in linear time

As a first example, let us assume that only two types of tiles are available, white tiles (denoted by 0) and
black ones (denoted by 1). The adjacency constraint thus implies that there are only two allowed configuration:
the “all white” configuration 0Z

2

and the “all black” configuration 1Z
2

.
In this specific case, a cellular automaton with the desired behaviour is called an eroder, and a well-known

example is Toom’s North-East-Center majority rule. Let us denote e1 = (1, 0) and e2 = (0, 1).

Definition 3.1. Toom’s (deterministic) majority cellular automaton is the cellular automaton NEC-Maj :

{0, 1}Z2 → {0, 1}Z2

with neighbourhood N = {0, e1, e2} defined, for any x ∈ {0, 1}Z2

and k ∈ Z2, by

NEC-Maj(x)k = maj(xk, xk+e1 , xk+e2).

Proposition 3.2. Toom’s majority cellular automaton stabilises the set {0Z2

, 1Z
2} from finite perturbations, in

linear time with respect to the diameter of the modified area.

Proof. If the perturbation is included in the triangular area defined by the three points k, k + re1, k + re2, for
some k ∈ Z2 and r ∈ N, then, after one application of Toom’s cellular automaton, it is included in the triangular
area defined by the points k, k + (r − 1)e1, k + (r − 1)e2. The result follows. □

In fact, it is known that Toom’s cellular automaton also has the property to stabilise the set {0Z2

, 1Z
2} from

random perturbations. More than that, a remarkable result is that, starting from a Bernoulli product measure
of parameter p, it converges to the configuration 0Z

2

if p < 1/2, and to 1Z
2

if p > 1/2. In a way, Toom’s cellular
automaton thus provides a solution to the density classification problem discussed in the previous section, but
here in the context of an infinite grid. We refer to the article of Bušić et al. [1] for further discussions on this
topic. This result is specific to this automaton, but the following theorem holds, we refer to the work of Fatès
et al. [5] for a formal statement and a proof of this result.

Theorem 3.3. If a cellular automaton stabilises a tiling set from finite perturbations in linear time, then it
also stabilises it from Bernoulli random perturbations with a sufficiently low density of errors.

The proof is based on the idea of sparseness due to Gács [6–8], and Durand, Romashchenko and Shen [2].
Let us give some classes of tiling sets that can be stabilised in linear time with respect to the diameter of the

modified area, and for which the above theorem can therefore be applied:
(1) periodic tilings, or equivalently, tiling sets containing only a finite number of allowed configurations;
(2) single-cell fillable tilings, that is, tiling sets for which, given four tiles located at the bottom, top, left

and right of a given cell, there is always at least one admissible way to fill the central cell.
Apart from the example above of the two monochromatic configurations 0Z

2

and 1Z
2

, an example of periodic
tiling is given by the set containing the two checkerboards configurations. Concerning single-cell fillable tilings,
a simple example is given by k-colourings, with k ≥ 5. As an application of Theorem 3.3, any cellular automaton
that stabilises these tilings in linear time also stabilises small random perturbations.

3.2. Other results and open questions

In the previous subsection, Toom’s majority cellular automaton provided a directional solution to the sta-
bilisation problem: the cells need to distinguish between the four directions North, South, East, West, even
though the constraints defining the tiling set is perfectly symmetrical. In general, finding self-stabilising cellular
automata that respect the symmetries of the tiling set appears to be a difficult problem, which does not always
have a solution. However, in the specific case of the set {0Z2

, 1Z
2}, the use of randomness in the evolution of the

cellular automata allows us to design a simple solution that achieves self-stabilisation with a nearest-neighbour
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isotropic rule. Namely, a solution is given by the probabilistic cellular automaton whose local rule is the ma-
jority on the four nearest neighbours, with a uniform random drawing in case of equality. We can extend the
above isotropic probabilistic rule to stabilise any finite tiling set in at most cubic time.

In a similar vein, given a single-cell fillable tiling, it is possible to design a probabilistic cellular automaton
that stabilises it from finite perturbations in at most logarithmic time.

In contrast, we have also been able to prove that for some choices of the local constraints, the self-stabilisation
problem is inherently hard. More precisely, unless P=NP, there exist tiling sets requiring super-polynomial
stabilisation time. An interesting example that is still open is the case of 3-colourings: indeed, the local
constraints can produce long-range correlations, so that for the moment, we have no candidate for the self-
stabilisation. We refer to [5] for further discussion on these questions.

4. Conclusion and perspectives

We have presented different inverse problems consisting of finding local rules allowing to achieve a global
organisation behaviour from a disordered initial state.

To get a little closer to a concrete problem affecting computer networks, we have also recently been looking
at another inverse problem, the decentralised diagnosis problem [4]. The objective is to design a system able to
detect the presence of a given number of failures in a distributed network, in a totally decentralised way. More
precisely, we ask that when the density crosses a given threshold, all the components are in the alert state,
and remain so. Again, we aim to work with a minimal model, and consider only cellular automata with three
states: neutral, alert, defect. Our idea is to take advantage from the phase transition phenomena observed
in some probabilistic cellular automata where a qualitative change of behaviour occurs when their transition
probabilities are continuously varied. Like in the previous section, when working on the two-dimensional lattice,
a relatively simple solution can be proposed on Toom’s neighbourhood: this neighbourhood breaks the isotropy
and installs a direction in which information travels. While this may seem a drawback for concrete applications,
it has the advantage of allowing us to derive a more formal analysis of the behaviour of the model. Work is still
in progress to propose an isotropic rule, which could be more easily adapted to general networks.

Two main lessons can be drawn from this collection of examples:
(1) the introduction of randomness in the dynamics can be an essential ingredient for self-organisation,
(2) setting up a direction in which information is propagated can also facilitate self-organisation.

But it remains a little frustrating not to be able to give a more general framework to these observations. In
fact, when working with complex systems, we expect about any behaviour to be possible, if we allow any type
of local rule. But when we impose particular constraints on the system (binary states, neighbourhood of small
size, deterministic rule, isotropy, etc.), this restricts the possibilities in ways that are often difficult to identify
precisely. However, this seems to be a necessary step in order to be able to go beyond numerical simulations
by developing a mathematical analysis of the models involved, and therefore to understand their behaviour
theoretically.
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