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Abstract. Cellular automata and percolation theory have been mutu-
ally enriching for some time now. Percolation theory studies the connec-
tivity properties of random subgraphs of a regular network, and provides
tools for studying probabilistic cellular automata. In some cases, it is also
a great help for analysing the evolution of deterministic cellular automata
which evolve from random configurations. Conversely, the theory of cel-
lular automata provides new insights into some percolation properties,
and raises many questions. In the present survey article, we recall some
well-known connections between cellular automata and percolation, to-
gether with a more recent development, the study of a percolation game.

Keywords: cellular automata · percolation.

In the last decades, various works have highlighted some connections between
cellular automata and percolation [12,20,21,22]. The aim of this article is to give
a few examples illustrating the different forms these connections can take. To
begin with, let us introduce cellular automata and percolation in a few words.

A cellular automaton (CA) is a dynamical system defined on the set SZd

, for
some finite set S of symbols (or states). It is obtained by iterating a local update
rule simultaneously at every site of the lattice. Formally, for n1, . . . , nm ∈ Zd,
the cellular automaton (CA) of neighbourhood N = {n1, . . . , nm} and local rule
f : Sm → S is the function: F : SZd → SZd

defined by:

∀x ∈ SZd

, ∀k ∈ Zd, F (x)k = f(xk+n1
, . . . , xk+nm

).

For probabilistic cellular automata (PCA), all the cells are still updated
simultaneously in discrete time, but the local rule is now a function φ : Sm →
M(S), where M(S) denotes the set of probability distributions on S. From a
configuration x ∈ SZd

, cell k ∈ Zd is updated by a symbol chosen according to
the distribution φ(xk+n1

, . . . , xk+nm
), independently for different cells. The local

function φ allows one to define a global map Φ : M(SZd

) → M(SZd

), describing
the action of the PCA on a configuration drawn according to a certain probability
distribution.
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As an example, let us fix a value ε ∈ [0, 1], and consider the one-dimensional
binary CA of neighbourhood N = {−1, 0, 1}, defined by the local rule:

φ(x, y, z) = (1− ε) δx+z + ε δx+z+1 =

{
x+ z with probability 1− ε

x+ z + 1 with probability ε
,

where the sums x + z and x + z + 1 are computed modulo 2. The local rule
thus consists in computing the sum (modulo 2) of the left neighbour and of the
right neighbour, but with a probability ε of making a mistake, independently
for different cells. For ε = 0, we recover a deterministic CA (rule 90 in Wol-
fram’s notation), whose space-time diagram reveals a Sierpiński triangle when
the initial configuration contains a single 1. Figure 1 shows two examples of
space-time diagrams for the parameter ε = 0.001, from different initial configu-
rations. Observe that if we erase the first few lines of the space-time diagram, it
is quite difficult to have an idea of what the initial configuration was. The noisy
sum PCA can indeed be shown to be ergodic for any ε ∈ (0, 1), see Section 2
for a formal definition. Moreover, its unique invariant measure is the uniform
distribution [22].

Initial config. with a single 1 Initial config. distributed unif. at random

Fig. 1. Two space-time diagrams of the noisy sum PCA of parameter ε = 0.001, from
different initial configurations (time goes up).

Percolation theory studies the properties of connected clusters in a random
subgraph of a lattice. Let us label each cell of the grid Zd independently by
a 1 with probability p, and by a 0 with probability 1 − p, for some parameter
p ∈ (0, 1). For p sufficiently large, the random configurations obtained contain
almost surely an infinite path of cells labeled by 1, while for p small, the islands
of cells in state 1 are almost surely all finite, see Fig. 2 for an illustration with
d = 2. Among other questions, percolation theory is interested in investigating
the critical value of the parameter p above which there exists almost surely such
an infinite cluster.

Given a neighbourhood N = {n1, . . . , nm}, one can also consider the directed
graph with set of vertices Zd × N, and bonds from (k, t) to (k − ni, t + 1),
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for k ∈ Zd, t ∈ N and ni ∈ N . Again, we can label each vertex of Zd × N
independently by a 1 with probability p, and ask whether there exist infinite
directed paths of vertices in state 1 in this directed percolation model, see Fig. 3
for an illustration with d = 1 and N = {−1, 0, 1}.

p = 0.4 p = 0.5 p = 0.6

Fig. 2. Undirected site percolation on Z2: connected component of the origin for ran-
dom configurations with different parameters.

p = 0.4 p = 0.5 p = 0.6

Fig. 3. Directed site percolation of neighbourhood N = {−1, 0, 1}: connected compo-
nent of the origin for random configurations with different parameters.

In Section 1, we study the evolution of some specific two-dimensional bi-
nary deterministic CA from random initial configurations. The first one is the
bootstrap CA, which can be seen as a dynamical model of percolation. The sec-
ond one is Toom majority CA, and exhibits a bifurcation behaviour, depending
on whether the density of the initial configuration is greater or smaller than
1/2. The proof strongly relies on the fact that on the triangular lattice, the site
percolation threshold is equal to 1/2.

In Section 2, we study the asymptotic behaviour of PCA, and show that
properties of directed percolation on Zd ×N can be used to prove the ergodicity
of a PCA on Zd.
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Finally, in Section 3, we introduce and study a specific PCA that is related
to the hardcore model, a model of lattice gas systems which has received much
attention in statistical physics. We show that this PCA plays an unexpected
role in the enumeration of directed animals, which are the possible shapes that
directed percolation clusters can take, and that it is also involved in the study
of a combinatorial game on percolation configurations.

We will sketch the strategies of the proofs without writing the proofs in
detail. For further precision, the interested readers can consult the references
that are provided all along the article. We shall generally refer to the book by
Kůrka [16] and the survey by Kari [15] for background on deterministic cellular
automata and to the surveys by Toom et al. [22] and Mairesse and Marcovici [18]
for background on probabilistic cellular automata. The authoritative reference
on percolation is the book by Grimmett [11].

1 Two well-known examples of CA related to percolation

In the following, we denote by e1 = (1, 0) and e2 = (0, 1) the two vectors of the
standard basis of R2.

1.1 Bootstrap cellular automaton

Let us consider a binary CA whose local rule satisfies the following property:
a cell in state 1 remains in state 1, and a cell in state 0 changes to a 1 if it
has at least ℓ neighbours in state 1, for some fixed value ℓ. Such a CA can be
seen as a simple model of infection spreading, where a cell becomes “infected” by
contact with ℓ or more already infected neighbours, without possible remission.
The two-dimensional case with ℓ = 2 has attracted much attention. Precisely,
let us define the bootstrap CA as the CA FB : {0, 1}Z2 → {0, 1}Z2

defined on von
Neumann neighbourhood N = {0,±e1,±e2} by the local rule

fB((xi)i∈N ) =

{
1 if x0 = 1 or Card {i ∈ N : xi = 1} ≥ 2,

0 otherwise.

Experimentally, when iterating this CA from an initial configuration where cells
are in state 1 with probability p, independently for different cells, the state 1
invades the grid very quickly if p is large, while for p very small, we observe
a stabilisation on a configuration made of disjoint rectangles of occupied cells.
However, the following result was proved by van Enter [7].

Theorem 1. For any p > 0, the bootstrap CA on the infinite lattice Z2 con-
verges almost surely to the configuration “all 1”, when iterated from an initial
configuration where cells are in state 1 with probability p, independently for dif-
ferent cells.

Sketch of the proof. The proof is based on the following observation: if there is
somewhere in the configuration an occupied square (that is, a square whose cells
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are all in state 1) that is not surrounded by any empty rectangular contour (that
is, a closed path of cells having a regular shape, whose cells are all in state 0),
then we are sure that the state 1 will invade the grid. Even if p is very small,
whatever the value of N , the probability of a square with side N being occupied
is strictly positive, so that there exists almost surely such an occupied square
in the configuration, as we work with infinite configurations. If N is sufficiently
large, it is very likely that this occupied square has at least one cell in state 1
on its edge, and so on, resulting in the entire grid being invaded. ⊓⊔

More recent work by Holroyd has led to a better understanding of what
happens on finite grids [13]. In a nutshell, on a large N × N grid, if p >
π2/(18 logN), convergence to total occupancy occurs with high probability, while
if p < π2/(18 logN), it is not the case. However, one would need to do simulations
on grids with a side of the order of 1020 to observe this threshold experimentally,
as explained by Gravner and Holroyd [10].

1.2 Toom’s majority CA

Another class of interesting binary CA consists in majority CA, for which the
local rule is such that a cell changes to a 0 (resp. 1) if it has a strict majority
of neighbours in state 0 (resp. 1). As a particular case, let us introduce Toom’s
majority CA: it is the binary CA FT : {0, 1}Z2 → {0, 1}Z2

of neighbourhood
N = {0, e1, e2} defined by the local rule

fT (x0, xe1 , xe2) =

{
1 if x0 + xe1 + xe2 ≥ 2,

0 otherwise.

Unlike the bootstrap CA presented above, it presents a bifurcation phenomenon,
according to the initial density of 1’s [2].

Theorem 2. Let us consider an initial configuration where cells are in state 1
with probability p, independently for different cells. If p < 1/2, Toom’s majority
CA converges almost surely to the configuration “all 0”, while if p > 1/2, it
converges almost surely to the configuration “all 1”.

Sketch of the proof. The proof of this result strongly relies on the fact that on
the triangular lattice, the value of the site percolation threshold is exactly 1/2.
By symmetry, it is sufficient to prove the result for p < 1/2. Let us consider
the (undirected) graph whose set of vertices is Z2, with the usual horizontal
and vertical edges {x, x + e1} and {x, x + e2}, for x ∈ Z2, together with NW-
SE diagonal edges {x, x + e2 − e1}. We thus obtain a triangular lattice, and it
is known that for p < 1/2, there exists almost surely no infinite 1-cluster in
the initial configuration. Thus, the set of initially occupied cells consists almost
surely of a countable union of finite 1-clusters. Toom’s rule does not break up
or connect different 1-clusters, and it is an eroder, which implies that any finite
1-cluster disappears in finite time. These ingredients allow one to demonstrate
the desired result. ⊓⊔



6 Irène Marcovici

For a given ε > 0, let us consider the PCA that applies Toom’s rule with
probability 1 − ε, and do the contrary with probability ε, independently for
different cells. For ε small enough, this PCA is known to have several invari-
ant distributions. More precisely, it has at least one invariant distribution close
to the configuration “all 0” and one close to “all 1”. It thus provides a simple
example of two-dimensional non-ergodic positive-rate PCA (all the probability
transitions are strictly between 0 and 1). In dimension 1, it is much harder
to exhibit positive-rate PCA that are non-ergodic: the only known example is
due to Gács [9], and is very complicated. Also, it is on open problem to know
whether there exists a one-dimensional CA that presents the same bifurcation
phenomenon as Toom’s CA. This is related to the density classification prob-
lem [2].

2 Ergodicity of PCA and directed percolation

A PCA is said to be ergodic if it asymptotically “forgets” its initial condition,
meaning that the trajectories always converge to the same distribution regardless
of the initial configuration. Formally, a PCA Φ is ergodic if it has a unique
invariant probability distribution π that attracts every initial distribution, in
the sense that for any distribution µ of M(SZd

), µΦt → π weakly as t → +∞.
We will see that a comparison with directed percolation of same neighbour-

hood provides a sufficient condition for the ergodicity of PCA. First, let us come
back to the directed percolation model, and show that this process can be inter-
preted as a PCA.

2.1 The percolation PCA

Let N = {n1, . . . , nm} be a given subset of Zd, and consider the PCA Φp on
{0, 1}Zd

defined by the local function:

φp(a1, . . . , am) = p δmax{a1,...,am} + (1− p) δ0,

meaning that if a cell has at least a 1 in its neighbourhood, it becomes a 1 with
probability p, and otherwise, it takes state 0. This PCA, which is also referred to
as Stavskaya PCA for d = 1 and N = {0, 1}, can be seen as a dynamical version
of directed percolation of neighbourhood N . Assume that all sites are in state 1 in
the initial configuration of the PCA. We can then couple the space-time diagram
of Stavskaya PCA with a directed percolation process, in such a way that cell k
is in state 1 at time t for the PCA if and only if in the percolation process, there
is a directed path from some site (l, 0) to the site (k, t), along which all sites are
in state 1. As a consequence, the PCA has two possible behaviour depending
on whether p is smaller or larger than the percolation threshold pc(N ) of the
directed percolation model of neighbourhood N . If p < pc(N ), then whatever
the initial configuration is, the state 1 dies out and the PCA converges to the
configuration containing only the state 0, while if p > pc(N ), from an initial
configuration that contains cells in state 1, the state 1 has a positive survival
probability.
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2.2 Ergodicity criterion

We will now present a criterion of ergodicity that is based on a coupling of the
trajectories from all the possible initial configurations, and on a comparison with
directed percolation. Intuitively, a PCA is ergodic if it “forgets” its initial condi-
tion. In some cases, it is possible to prove the ergodicity in a constructive way, by
making evolve simultaneously the trajectories from different initial conditions,
using a common source of randomness, and showing that the evolutions of all
these trajectories are asymptotically the same.
The envelope PCA allows one to systematize this idea of coupling. Instead of
running the PCA from different initial configurations, we define a new PCA on
an extended alphabet, containing a symbol ? representing sites whose values are
not known (i.e. which may differ between the different copies) and we run it
from a single initial configuration containing only the symbol ?. Each time we
are able to make the different copies match on a cell, the symbol ? is replaced by
the state q ∈ S on which the different copies agree. An evolution of the envelope
PCA thus encodes a coupling of different copies of the original PCA, with a
symbol ? denoting sites where the copies disagree. If the density of symbols ?
converges to 0 when time goes to infinity, it means that the PCA is ergodic.

The envelope PCA was introduced in [3] as a tool to prove the ergodicity of
a PCA and to generate perfect samples from its unique invariant distribution.
The idea of the envelope PCA is reminiscent of the minorant PCA introduced by
Toom et al. [22, Chap. 3], which can be used in a more or less similar fashion to
prove ergodicity in the high-noise regime, and similar ideas have been pursued
by others [8].

To simplify the presentation, let us assume that Φ is a PCA defined on a
binary symbol set S = {0, 1}, and let S̃ = {0, 1, ?}. We define a partial order on
S̃ by 0 ≺ ? ≻ 1. The envelope PCA Φ̃ of Φ is the PCA of neighbourhood N and
local function φ̃ : S̃m → M(S̃), defined for q ∈ S by:

φ̃(y1, . . . , ym)(q) = min{φ(x1, . . . , xm)(q) : x1 ⪯ y1, . . . , xm ⪯ ym},

where in the expression above, x1, . . . , xm are taken in S. The probability of a
transition to the symbol ? is then given by:

φ̃(y1, . . . , ym)(?) = 1− φ̃(y1, . . . , ym)(0)− φ̃(y1, . . . , ym)(1).

From a configuration y ∈ S̃Zd

, cell k is thus updated by the symbol q ∈ S
with the minimum of the probabilities of transition to the symbol q for Φ, taken
over all the values of the neighbourhood of cell k that are compatible with the
unknown cells of y. With the remaining probability, the cell is updated by a ?.

In particular, in the evolution of the envelope PCA, at each time step, a cell
is updated by the symbol ? only if it has at least one neighbour in state ?, and
in that case, it becomes a ? with probability at most:

p? = 1− min
x1,...,xm∈S

φ(x1, . . . , xm)(0)− min
x1,...,xm∈S

φ(x1, . . . , xm)(1).

This quantity measures how much the probability transitions depend on the
value of the neighbourhood, and we have the following result [3].
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Theorem 3. Let pc(N ) be the critical value of the two-dimensional directed site
percolation of neighbourhood N . If p? < pc(N ), then Φ̃tδ?Zd [?] −−−−→t→+∞

0, so that

the PCA Φ is ergodic.

Sketch of the proof. Let us consider the directed graph describing the depen-
dences between cells in the space-time diagram of the PCA. It is exactly the
graph of set of vertices Zd × N, and bonds:

E = {((k, t), (k − ni, t+ 1)) : k ∈ Zd, t ∈ Z, ni ∈ N}.

By dominating the process of symbols ? in the space-time diagram of the enve-
lope PCA by Stavskaya PCA of parameter p?, one proves that if p? < pc(N ),
then the symbols ? die out. The result follows. ⊓⊔

2.3 The general ergodicity problem

As already noted, Theorem 3 only provides a sufficient condition for ergodicity.
First, there exist simple examples of PCA that can be proved to be ergodic,
but for which the envelope PCA is not ergodic. It is the case for example of
the noisy sum PCA, when the noise ε is small [3]. Second, there are PCA for
which the envelope PCA is ergodic, but with p? > pc(N ), so that the criterion
of Theorem 3 is of no help for proving the ergodicity, see Section 3.2. In fact,
Theorem 3 proves the ergodicity in the high-noise regime, when the local rule of
the PCA depends sufficiently weakly on the value of the neighbourhood. Outside
this regime, ergodicity is often difficult to prove, even in cases where it appears
clear from heuristics or simulations. In Ref. [19], the authors gather different
techniques for proving the ergodicity of PCA that are the perturbation of a
deterministic CA by a small (positive) noise, but apart from specific families
of CA (nilpotent, permutive, gliders, CA with a spreading symbol, surjective,
algebraic), the problem is still largely open.

3 The hardcore PCA: a combinatorial excursion on
percolation

In this section, we study from different points of view the binary one-dimensional
PCA of neighbourhood N = {0, 1} that is presented in Fig. 4. We first present
the close relationship between this PCA and the hardcore model from statistical
physics. Then, we show that this PCA is related to percolation in at least two
ways: it has an invariant distribution that is related to the counting series of
directed percolation clusters, and it also appears in the study of a combinatorial
game on percolation configurations.

3.1 The hardcore model

The hardcore model is a model of statistical mechanics in which particles are
allowed to be on the vertices of a graph, but with the constraint that no two
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0 0

0
1

with prob. p
with prob. q = 1− p

1
∗

∗
1

0

?
?
0

?
0
?

0
?

with prob. p
with prob. q

Fig. 4. Probability transitions of the hardcore PCA (left) and additional transitions of
its envelope PCA (right). The symbol ∗ denotes an arbitrary symbol.

q = 0.10 q = 0.50

q = 0.90 q = 0.99

Fig. 5. Space-time diagrams of the hardcore PCA for the parameters q = 0.10, q = 0.50,
q = 0.90 and q = 0.99, from the initial configuration “all 1” (time is going up).
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particles may be adjacent. Formally, let G = (V,E) be a finite graph. A configu-
ration ω ∈ {0, 1}V is said to be a hardcore configuration (or an independent set)
if for any i, j ∈ V such that {i, j} ∈ E, (ωi, ωj) ̸= (1, 1). We denote by H the set
of hardcore configurations. Let λ > 0. The hardcore measure on G with activity
λ is the probability distribution µ on {0, 1}V defined by:

∀ω ∈ {0, 1}V , µ(ω) =
λ
∑

i∈V ωi

Zλ
1ω∈H,

where Zλ is the normalizing constant (or partition function), defined by Zλ =∑
ω∈H λ

∑
i∈V ωi . The distribution µ can also be characterized as follows: it is

the probability measure under which the labels ωi, for i ∈ V, are independent
Bernoulli random variables of parameter λ/(1 + λ), conditioned on “having no
adjacent 1’s”.

For an infinite graph G (countable, and locally finite), we can extend this def-
inition by saying that a probability measure µ on {0, 1}V is a hardcore measure
on G with activity λ if the conditional distribution on a finite set A, given the
configuration outside A, is just the distribution under which the vertices of A
that are adjacent to a vertice of V \A in state 1 take value 0, and the distribution
on the remaining set follows the (finite-case) hardcore measure with activity λ.
It follows from standard argument of Gibbs measure theory that at least one
such measure always exists. In the case of the lattice graph (Zd, Ed), it is known
that for d = 1, for any activity λ > 0, there exists a unique hardcore measure,
while a phase transition phenomenon occurs for d ≥ 2: the hardcore measure
is unique if λ is sufficiently small, but not for larger values of λ. In particular,
when λ goes to infinity, there are two extremal Gibbs measure that concentrate
asymptotically on the two odd and even “checkerboard” configurations.

Let us focus on the case of the one-dimensional lattice Z. It can be seen that
the (unique) hardcore measure µ of activity λ corresponds to the stationary
Markov chain of transition matrix:

Pλ =

(
p0,0 p0,1
p1,0 p1,1

)
=

(
1− xλ xλ

1 0

)
,

with:
p0,1p1,0

p0,1p1,0 + p0,0p0,0
=

xλ

xλ + (1− xλ)2
=

λ

1 + λ
.

Let X be a configuration distributed according to µ, and consider now the
subfamily Xeven = (X2i)i∈Z of even cells, and the subfamily Xodd = (X2i+1)i∈Z
of odd cells. Then, Xeven and Xodd are both distributed according to a same
distribution µhalf , which is the stationary measure of the Markov chain of tran-
sition matrix P 2

λ . By definition of µ, if we update the state of a cell of X by a 1
with probability λ/(1 + λ) if it two neighbours are in state 0, and by a 0 other-
wise, the resulting configuration still has distribution µ. This is also true if we
update simultaneously all even (resp. odd) sites. As a consequence, the measure
µhalf , seen as a measure on {0, 1}Z, is an invariant distribution of the hardcore
PCA of parameter q = λ/(1 + λ). This invariant distribution is reversible: if we
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first draw Xeven according to µhalf and then update Xodd as above, the resulting
configuration, which encodes the two consecutive configurations in the evolution
of the PCA, has the same distribution as if we first draw the odd cells according
to µhalf and then update the even cells using the PCA rule.

3.2 Ergodicity of the hardcore PCA

We have exhibited an invariant distribution of the one-dimensional hardcore
PCA, having a Markovian structure. With the notations of Section 2.2, we have
p? = q. Thus, the criterion of Theorem 3 provides the ergodicity of the PCA only
for small enough values of q. Furthermore, for large values of q, simulations can
cast doubts on the asymptotic behaviour of the hardcore PCA, since starting
from the configuration “all 1”, we observe for a very long time an alternance
between configurations with a very large majority of 1’s and configurations with
a very large majority of 0’s (see Fig. 5), meaning that the system still remembers
some information about the initial configuration. Nevertheless, one can prove the
following.

Theorem 4. For any p ∈ (0, 1), the hardcore PCA of parameter p is ergodic.

There exist at least three ways to prove this result, each of them having some
advantages and disavantages.

(i) Connection with the hardcore PCA. Thanks to a monotonicity argu-
ment, one can deduce the ergodicity of the PCA from the uniqueness of
the Gibbs measure for the corresponding hardcore model, see the proof of
Theorem 2 (ii) in Ref. [14].

(ii) Weight system. One can prove the ergodicity of the envelope PCA by
introducing a suitable weight system that plays the role of a Lyapunov func-
tion, in order to prove that the density of the symbol ? goes to zero, see
Section 2.2. of Ref. [14].

(iii) Decorrelated islands. A proof of the ergodicity of the envelope PCA can
also be made by studying the boundaries of islands of symbols ? where the
PCA is totally decorrelated from its initial condition [4].

The first proof strongly relies on the connection with the hardcore model,
and allows one to recover the expression of the unique invariant measure of the
hardcore PCA as the measure µhalf of “one in every two” cells of the Gibbs mea-
sure. It can be extended to other bipartite graphs for which the hardcore Gibbs
measure is unique. In contrast, proofs (i) and (ii) do not require any knowl-
edge about the hardcore model, but does not give any information about the
expression of the unique invariant distribution of the hardcore PCA. However,
even though the weighting system is quite specific to the local rule of this PCA,
proof (ii) is still valid for a larger family of PCA [14]. The strategy of proof (iii)
also allows us to handle hardcore PCA with two parameters, or defined on a
neighbourhood of size 3, even if it is at the cost of many computations [5].
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Actually, the ergodicity of the envelope PCA can also be seen as a conse-
quence of the ergodicity of the hardcore PCA, using the monotonicity of the
envelope PCA with respect to the order on configurations induced by the order
on symbols defined by 0 ⪯ ? ⪯ 1.

3.3 Directed animals

Directed animals are combinatorial objects related to directed percolation mod-
els. As shown by Dhar [6], enumerating directed animals according to the area on
certain graphs is equivalent to solving a hard particle model on another graph.
We will see that when the graph is the two-dimensional lattice, the counting
series is then closely related to the unique invariant distribution of the hardcore
PCA.

Consider the directed graph of set of vertices Z×N, and edges E = {((k, t), (k+
vi, t + 1)) : k ∈ Z, t ∈ N, vi ∈ {0, 1}}. Let B be a non-empty finite subset of Z.
A directed animal of base B is a finite subset A of Z× N such that:

• A ∩ (Z× {0}) = B × {0},

• ∀x ∈ A, ∃n ∈ N, ∃x0 . . . , xn ∈ A,

{
x0 ∈ B × {0}, xn = x,

∀i ∈ {0, . . . , n− 1}, (xi, xi+1) ∈ E
.

A directed animal is a directed animal of base {0}, see Fig. 6.

Fig. 6. A directed animal (left) and a set which is not a directed animal (right).

The counting series of directed animals of base B, respectively of directed
animals, is the formal series defined by:

SB(x) =
∑

A: directed animal of base B

x|A| (resp. S(x) = S{0}(x)).

The coefficient of xn in S(x) thus gives the number of directed animals of size n.
Removing the bottom line of a directed animal provides either the empty set or a
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new animal on the lines {1, 2, . . . }. This simple observation provides a recurrence
relation on counting series:

SB(x) = x|B|
( ∑

C⊂B+N
SC(x)

)
,

where N = {0, 1}, and with the convention S∅(x) = 1.
Consider now a sequence of random variables X = (Xi)i∈Z with values in

{0, 1}, and let Y = (Yi)i∈Z be a realization of the image of (Xi)i∈Z by the
hardcore PCA of parameter q. By definition of the PCA, for a finite set B ⊂ Z,
we have:

P
(
∀i ∈ B, Yi = 1

)
= P

(
∀i ∈ B +N , Xi = 0

)
q|B|.

It then follows from the inclusion-exclusion principle that:

P
(
∀i ∈ B +N , Xi = 0

)
=

∑
C⊂B+N

(−1)|C|P
(
∀i ∈ C, Xi = 1

)
.

Assume that X is distributed according to an invariant distribution π of the
PCA, and for C ⊂ Z, let TC = π({ω ∈ SZ : ∀i ∈ C,ωi = 1}).
Then, Y is also distributed according to π, and we obtain:

TB = q|B|
∑

C⊂B+N
(−1)|C|TC .

It follows that the family (−1)|B|TB , for finite subsets B of Z, satisfies the same
recursion as the family SB(−q). This provides an unexpected relation between
these two models. Furthermore, since µhalf is one explicit invariant distribution
of the hardcore PCA, it provides a candidate for the counting series of directed
animals. The last step consists in arguing that the counting series indeed satisfies:

SB(−q) = (−1)|B|µhalf({ω ∈ SZ : ∀i ∈ B,ωi = 1}).

This requires an argument since the recurrence relations may admit several fam-
ilies of solutions, with only one of them defining the counting series. The idea is
to proceed in reverse direction: from the actual counting series, one can define a
probability distribution π, that can be proved to be an invariant distribution of
the hardcore PCA, and it is thus equal to µhalf , see Ref. [1,6,17] for details and
extensions.

3.4 Playing with percolation

We now show that the hardcore PCA is also related to the study of a combi-
natorial game on percolation configurations. Let each cell of the square lattice
Z2 be independently assigned one of the state trap with probability p, and open
with probability q = 1−p, where p ∈ [0, 1]. Consider the following game: a token
starts at the origin, and two players take turns to move, where a move consists
of moving the token from its current cell x to either x + (0, 1) or x + (1, 0). A
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player who moves the token to a trap loses the game immediately. Otherwise
(i.e. if the destination cell is open), the game continues with the other player’s
turn. The entire random assignment of traps and open cells to Z2 (which we call
the percolation configuration) is known to both players at all times. We call this
game the percolation game on Z2.

If q ≤ pc, where pc is the critical probability for directed site percolation with
neighbourhood N = {0, 1}, then, with probability 1, only finitely many cells can
be reached from the origin along directed paths of open cells, and so the game
must end in finite time. In particular, one or other player must have a winning
strategy, where a strategy for one or other player is a map that assigns a legal
move (where one exists), to each cell, and a winning strategy is one that results
in a win for that player, whatever strategy the other player uses. Suppose on the
other hand that q > pc, is there now a positive probability that neither player
has a winning strategy? In that case, we say that the game is a draw, with the
interpretation that it continues forever with the best play. Note that when p = 0,
the game is clearly always a draw.

As we will see, the outcome (first-player win, first-player loss, draw) of the
game started from each cell can be interpreted in terms of the evolution of
the hardcore PCA, where the state of the PCA at a given time relates to the
outcomes associated to the cells on a given Northwest-Southeast diagonal of
Z2. Using the ergodicity of the hardcore PCA, one can prove that as soon as
p > 0, the probability that the game is a draw is equal to 0, and the Markovian
description of the invariant distribution then permits an explicit description of
the distribution of game outcomes along a diagonal [14].

Theorem 5. For any p ∈ (0, 1), there is almost surely no draws, and the proba-
bility that the first player wins the game (conditional on the origin being open),
is equal to:

1− 2p+
√

p
4−3p

2(1− p)
. (1)

This probability is greater than 1/2 if and only if p ∈ (0, 1/3), and its maxi-
mum value is 4− 2

√
3 = 0.5358..., attained at p = (2−

√
3)/3 = 0.0893....

Sketch of the proof. Suppose x is an open site of Z2. Let η(x) be W, L or D
according to whether the game started with the token at x is a win for the first
player, a loss for the first player, or a draw, respectively (recall that we assume
optimal play, with the players able to see entire percolation configuration when
deciding on their strategies). If x is a trap, it is convenient to set η(x) = W (we
adopt the convention that if the game starts at a trap, then it is a win for the
first player).

Let Out(x) = {x+ e1, x+ e2} be the set of cells to which the token can move
from x. By considering the first move, we have the following recursion for the
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status of the cells:

x a trap ⇒ η(x) = W,

x open ⇒ η(x) =


L if η(y) = W for all y ∈ Out(x),

W if η(y) = L for some y ∈ Out(x),

D otherwise.

(2)

For k ∈ Z, let Sk be the set {x = (x1, x2) ∈ Z2 : x1+x2 = k}, a NW-SE diagonal
of Z2. The recursion (2) gives us the values (η(x))x∈Sk

in terms of the values
(η(x))x∈Sk+1

together with the information about which sites in Sk are traps.
Via this recursion, we can regard the configurations on successive diagonals Sk,
as k decreases, as successive states of a one-dimensional PCA. Let us introduce
the following recoding:

W = 0, L = 1, D = ?.

Then, one can check that the PCA evolves as follows: given the values for cells
in Sk+1, each value η(x) for x ∈ Sk is derived independently using the values
η(x + e1) and η(x + e2), according to a local rule which is exactly the same as
for the envelope of the hardcore PCA, see Fig. 4.

Let us fix some integer N ≥ 0, and assume that on SN , the configuration
η is such that ∀x ∈ Sk, η(x) = ?. Then, if we iterate the PCA starting from
this configuration, from diagonal SN to S0, the probability that the origin O =
(0, 0) is in state 0 (resp. 1) can be interpreted as the probability that the first
(respectively second) player can force a win within at most N moves of the game.
In particular, if the probability that the origin is in state ? goes to 0 when N
goes to infinity, it means that the game is almost surely not a draw. But as
shown in Section 3.2, we already know that starting from the configuration δ?Z ,
the density of symbols ? goes to 0. This concludes the proof that there are no
draws, and the description of the unique invariant measure of the hardcore PCA
provides the expression of the winning probability. ⊓⊔
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