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Abstract. Corner percolation is a dependent bond percolation model on Z2 introduced by Bálint
Tóth, in which each vertex has exactly two incident edges, perpendicular to each other. In this
model, connected components are either finite cycles or bi-infinite simple paths. Gábor Pete proved
in 2008 that under the maximal entropy probability measure, all connected components are finite
cycles almost surely. We consider here a variation where West and North directions are preferred
with probability p and q respectively, with (p, q) ̸= (12 ,

1
2). We prove that almost surely, there exist

infinitely many bi-infinite simple paths. Furthermore, they all have the same asymptotic slope.

1. Introduction

Various constrained percolation models on Z2 have been studied, including models with restric-
tions on the degree of each vertex, see for example Garet et al. (2018) or de Lima et al. (2020). In
the present work, we study an even more constrained percolation model, called corner percolation,
where each vertex has exactly two incident open edges, perpendicular to each other. It was intro-
duced by Bálint Tóth as a four-vertex model, since the constraint only allows four configurations
on a given vertex. Corner percolation can also be seen as a degenerated and simpler version of the
six-vertex model, containing only four of the six allowed configurations, see Figures 1.1 and 1.2. We
refer to Zinn-Justin (2009) for more details on the six-vertex model.

Corner percolation configurations are also known under the name of hitomezashi design, by
analogy with a Japanese style of embroidery called sashiko, that creates patterns satisfying the
same constraints, see Figure 1.3. Since at each vertex, there is exactly one horizontal and one
vertical open edge, the components are either finite cycles or bi-infinite paths, made in both case of
a perfect alternation of horizontal and vertical edges. The mathematical properties of hitomezashi
loops have been recently investigated and still raise many questions. In particular, Defant and
Kravitz (2024) showed that their length is always congruent to 4 modulo 8 (a shorter proof has
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Figure 1.1. Correspondence
between a degenerate six-vertex
model (first line), which does
not allow gray configurations,
and a corner percolation. Blue
(resp. red) points are points of
Z2
o = {(x1, x2) ∈ Z2 : x1 + x2 ∈

1 + 2Z} (resp. Z2
e = Z2 \ Z2

o).

Figure 1.2. A configuration of
corner percolation (black edges)
and its associated six vertex
model configuration (black and
gray arrows).

been found very recently by Ren and Zhang (2024)), and the enumeration of hitomezashi loops
according to their length is still an open question.

Although they exhibit a rich combinatorial structure, corner percolation configurations can be
created by a very simple procedure. Indeed, in order to satisfy the constraint, there must be on
each horizontal line a perfect alternation of open and closed edges, and the same holds for vertical
lines. Consequently, a configuration can be parametrized by two binary sequences specifying, for
each horizontal and vertical line, which edges are open.

A natural question is then to ask whether there exists an infinite connected component, depending
on the probability distributions of the two binary sequences. Pete (2008) studied the model under
the maximal entropy probability measure. In this case, the bits of the two sequences encoding the
corner percolation are chosen independently and uniformly at random. The key object introduced by
Pete is the height function, which is a simple function of the two random walks naturally associated
to the two binary sequences. The connected components are in fact the level lines of this height
function. Using this height function, Pete (2008) proved that all connected components are finite
cycles almost surely.

Let us give an alternative interpretation of the maximal entropy probability measure. We consider
that each horizontal line of the grid Z2 is a one-way road that can be either oriented to the East or to
the West with probability 1

2 , and the same for vertical lines with North and South. This orientation is
fixed once and for all. We start from the origin of the grid and follow the horizontal road according
to its orientation. At each corner, we turn left or right according to the direction of the road
encountered, see Figure 1.4. This process describes a deterministic walk in a random environment,
and it can be seen that the path taken follows the component of the origin in a corner percolation
configuration distributed under the maximal entropy probability measure. Consequently, Pete’s
result ensures that the trajectory necessarily comes back where it started.

This point of view leads us to consider a case where some directions can be preferred: we extend
this model by considering that each vertical road is oriented to the North with probability q, and
that each horizontal road is oriented to the West with probability p. This amounts to take, for
the two binary sequences encoding the corner percolation, independent Bernoulli variables, with
parameters p for the horizontal lines, and q for the vertical lines, rather than parameter 1

2 for both.
Using the height function of Pete, we prove the following:
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Figure 1.3. A configura-
tion of corner percolation.

y

x
(0, 0)

Figure 1.4. An instance of a fi-
nite trajectory for the determin-
istic walk starting from the ori-
gin, in an environment giving the
directions of the roads.

Theorem 1.1. If (p, q) ̸= (12 ,
1
2), then with positive probability the path starting from the origin

never goes back to its starting point. Moreover, for all h ∈ Z, there almost surely exists a unique
bi-infinite simple path of level h, and all these paths have a same asymptotic slope, which is equal
to 2q−1

1−2p (if p = 1/2, the asymptotic slope is infinite). In particular, there is almost surely an infinite
number of bi-infinite simple paths, and they all have the same direction.

In our case, the two random walks encoding corner percolation are biased, and the strong law of
large numbers is sufficient to obtain informations on the level lines of the height function. In the
maximal entropy case studied by Pete, the random walks are symmetric, thus the analysis is much
more involved.

Burton and Keane (1991) studied the topological form and arrangement of infinite clusters in
percolation on Z2, in a very general case. With their classification, thus corner percolation is of
"two-sided infinite order type".

Theorem 1.1 will be proved in two steps, Proposition 3.3 and Proposition 3.6. In the next section,
we define the model more formally and introduce some notations.

2. Definition of the model

2.1. Definition and notations. Let us denote by (Z2,E2) the two-dimensional grid, that is, the graph
whose set of vertices is Z2 and whose set of edges is E2 = {{x, x+e1} : x ∈ Z2}∪{{x, x+e2} : x ∈ Z2},
where e1 = (1, 0) and e2 = (0, 1).

Let G be the set of subgraphs G = (Z2, E) of (Z2,E2) such that each vertex has exactly one
horizontal and one vertical adjacent edge, that is: for any x ∈ Z2, exactly one of the edges among
{x, x + e1} and {x, x − e1} belongs to E , and exactly one of the edges among {x, x + e2} and
{x, x− e2} belongs to E .

Let us introduce the following sets of even and odd elements of Z2:

Z2
e = {(x1, x2) ∈ Z2 : x1 + x2 ∈ 2Z},

Z2
o = {(x1, x2) ∈ Z2 : x1 + x2 ∈ 1 + 2Z}.
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Let Ω = {−1, 1}Z × {−1, 1}Z. Our notations are inspired by those of Pete. For a configuration
ω = (ξ, η) ∈ Ω, we define the set E(ω) of open edges as follows. For all i ∈ Z,

• if ξ(i) = 1, then for all k ∈ Z, the vertical edge {(i, k), (i, k) + e2} is open if and only if
(i, k) ∈ Z2

o. If ξ(i) = −1, then for all k ∈ Z, the vertical edge {(i, k), (i, k) + e2} is open if
and only if (i, k) ∈ Z2

e.
• if η(i) = 1, then for all k ∈ Z, the horizontal edge {(k, i), (k, i) + e1} is open if and only if
(k, i) ∈ Z2

o. If η(i) = −1, then for all k ∈ Z, the horizontal edge {(k, i), (k, i) + e1} is open
if and only if (k, i) ∈ Z2

e.
We then denote by X(ω) the graph in G with vertices set Z2 and set of edges E(ω). Note that the

y

x

-1

1-1

1

Figure 2.5. Construction of some open edges knowing that ξ(1) = 1, ξ(−3) = −1,
η(1) = 1 and η(2) = −1. Points of Z2

e are colored in gray, points of Z2
o in red.

map X : Ω → G is bijective. For p, q ∈]0, 1[, we introduce the probability

µp,q = (qδ1 + (1− q)δ−1)
⊗Z ⊗ (pδ1 + (1− p)δ−1)

⊗Z

on Ω (with the product σ-algebra). We denote by Pp,q the image of µp,q by X, and we call Pp,q the
corner percolation model with parameters (p, q). When there is no ambiguity on the parameters,
we write µ (respectively P) instead of µp,q (respectively Pp,q). In the special case q = p = 1

2 , this
distribution can be interpreted as the uniform distribution on G. In this work, we are interested
in the properties of random graphs of G distributed according to Pp,q, and more specifically in the
existence and properties of bi-infinite simple paths.

2.2. Infinite simple paths. Let z ∈ Z2
e. We encode the connected component which contains z by a

bi-infinite, possibly periodic, path Γz = (Γz
n)n∈Z of vertices. The origin of the path is Γz

0 = z. We
choose the orientation of Γz by taking Γz

1 such that {Γz
0,Γ

z
1} is a horizontal edge. Note that two

points of Γ∩Z2
e induce the same orientation on Γ. If the connected component of z is infinite, then

Γz is simple, while if the connected component of z is a circuit, then Γz is periodic. Also, we define
the forward path Γ+

z (resp. the backward path Γ−
z ) by

Γ+
z = (Γz

n)n∈Z+ (resp. Γ−
z = (Γz

−n)n∈Z+).

If Γz is a bi-infinite simple path, then both Γ+
z and Γ−

z are infinite simple paths.
We also define a notion of neighborhood between bi-infinite simple paths. We denote by O the

complement set in R2 of the set of open edges. We say that two bi-infinite simple paths are neighbors
if they are on the border of the same connected component of O.
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3. Height function and infinite simple paths

Now, we recall the definition and properties of the height function H : Z2 + (12 ,
1
2) → Z, which

was the key ingredient introduced by Pete (2008) to study the case (12 ,
1
2). We define the faces of Z2

to be the unit squares of center (n+ 1
2 ,m+ 1

2) for n,m ∈ Z. We color the faces of Z2 in a chessboard
manner: a face of center (n + 1

2 ,m + 1
2) is black if n +m ∈ 2Z, otherwise it is white. Note that a

path has only black faces along one side and only white faces along the other. We set H
(
1
2 ,

1
2

)
= 0.

To define H
(
n+ 1

2 ,m+ 1
2

)
, consider a path in Z2+(12 ,

1
2), from (12 ,

1
2) to (n+ 1

2 ,m+ 1
2). We follow

this path starting from (12 ,
1
2), and each time the path crosses an open edge from a black face to a

white face (respectively from a white face from a black face), we add (respectively substract) 1 to
the height, until we reaches (n+ 1

2 ,m+ 1
2). Note that the definition of H

(
n+ 1

2 ,m+ 1
2

)
does not

depend on the choice of the path, and all black faces (respectively all white faces) have the same
height along a path. The level of a path is the height of a black face along this path.

Despite the strong dependencies of the model, the height function can be expressed as a very
simple function of two independent simple random walks on Z. Remember that we denote by
(ξ(n))n∈Z (resp. (η(m))m∈Z) the values of the vertical (resp. horizontal) lines, and that its law is
(qδ1+(1−q)δ−1)

⊗Z (resp. (pδ1+(1−p)δ−1)
⊗Z). We define two independent random walks (Xn)n∈Z

and (Ym)m∈Z by setting:

X0 = 0, for n > 0, Xn =
n∑

i=1

ξ(i), and for n < 0, Xn = −
0∑

i=n+1

ξ(i);

Y0 = 0, for m > 0, Ym =

m∑
i=1

η(i), and for m < 0, Ym = −
0∑

i=m+1

η(i).

It is not difficult to check that:

H

(
n+

1

2
,m+

1

2

)
=

⌈
Xn + Ym

2

⌉
.

From the strong law of large numbers, we obtain directly the following lemma:

Lemma 3.1. For all θ ∈ [0, 2π[, we have almost surely, uniformly in θ:
Xr cos(θ) + Yr sin(θ)

r
−→

r→+∞
(2q − 1) cos(θ) + (2p− 1) sin(θ).

Proof : Let ε > 0. By the strong law of large numbers, there almost surely exists N ∈ Z∗
+ such that,

for all n ≥ N ,

max

(∣∣∣∣Xn

n
− (2q − 1)

∣∣∣∣ , ∣∣∣∣X−n

n
− (1− 2q)

∣∣∣∣ , ∣∣∣∣Ynn − (2p− 1)

∣∣∣∣ , ∣∣∣∣Y−n

n
− (1− 2p)

∣∣∣∣) ≤ ε

2
. (3.1)

We set R = 4N
ε . For θ ∈ [0, 2π[ and r ≥ R such that (r cos(θ), r sin(θ)) ∈ Z2, we have∣∣∣∣Xr cos(θ) + Yr sin(θ)

r
− [(2q − 1) cos(θ) + (2p− 1) sin(θ)]

∣∣∣∣
≤

∣∣∣∣Xr cos(θ)

r
− (2q − 1) cos(θ)

∣∣∣∣+ ∣∣∣∣Yr sin(θ)r
− (2p− 1) sin(θ)

∣∣∣∣ . (3.2)

We now bound the first term from above. We have two cases:

Case 1: | cos(θ)| ≤ ε
4 .

In this case, we bound from above Xr cos(θ) with the triangular inequality:∣∣∣∣Xr cos(θ)

r

∣∣∣∣ ≤ | cos(θ)|.
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Since |(2q − 1) cos(θ)| ≤ | cos(θ)|, we have∣∣∣∣Xr cos(θ)

r
− (2q − 1) cos(θ)

∣∣∣∣ ≤ 2 cos(θ) ≤ ε

2
.

Case 2: | cos(θ)| > ε
4 .

This time we have r| cos(θ)| ≥ N , so by (3.1), we have∣∣∣∣Xr cos(θ)

r cos(θ)
− (2q − 1)

∣∣∣∣ ≤ ε

2
.

Then we have ∣∣∣∣Xr cos(θ)

r
− (2q − 1) cos(θ)

∣∣∣∣ ≤ ∣∣∣∣Xr cos(θ)

r cos(θ)
cos(θ)− (2q − 1) cos(θ)

∣∣∣∣
≤ | cos(θ)|

∣∣∣∣Xr cos(θ)

r cos(θ)
− (2q − 1)

∣∣∣∣ ≤ ε

2
.

Working in the same manner for the second term in (3.2), we finally obtain, for all r ≥ R, with
R = 4N

ε independent of θ, ∣∣∣∣Xr cos(θ) + Yr sin(θ)

r
− ⟨zp,q, eiθ⟩R2

∣∣∣∣ ≤ ε.

□

Remark 3.2. We can easily check that the conclusion of Lemma 3.1 is equivalent to the following:
the graph of the map

[−1, 1]2 −→ R2

(x, y) 7−→ 1
nH(⌈nx⌉+ 1

2 , ⌈ny⌉+
1
2)

converges almost surely to the graph of the map
[−1, 1]2 −→ R2

(x, y) 7−→ x
2 (2q − 1) + y

2 (2p− 1)

for the Hausdorff metric on the subsets of R2 × R.

With Lemma 3.1 we are going to localize, for all h ∈ Z, the level set

Lh =

{
z ∈ Z2 +

(
1

2
,
1

2

)
: H(z) = h

}
of the height function. In order to do that, we introduce some notations. For all R ∈ R∗

+, we denote
by DR the disk of radius R, centered at the origin, and by Z[i] the set {a+ ib : a, b ∈ Z} ⊂ C. Fix
p, q ∈ (0, 1). Using the natural symmetry properties of the model, we can suppose that, without
loss of generality, p ≥ q ≥ 1

2 and p ̸= 1
2 . We set zp,q = 2q − 1 + i(2p − 1). We denote by θp,q the

argument of zp,q in [0, 2π[. Then we define, for ε > 0, the following discrete cone

Cε
p,q =

{
z ∈ Z[i] : ⟨ z

|z|
, eiθp,q⟩R2 ≤ ε

}
.

Note that tan
(
θp,q +

π
2

)
= 2q−1

1−2p . Therefore, Cε
p,q is centered around the line of equation y = 2q−1

1−2px.

Proposition 3.3. Let (p, q) ̸= (12 ,
1
2). Then we have, for all h ∈ Z and ε > 0,

P(∃R ∈ R∗
+ : Lh ⊂ DR ∪ Cε

p,q) = 1.

It follows directly that we have, for all z ∈ Z2 and ε > 0,

P(∃R ∈ R∗
+ : Γz ⊂ DR ∪ Cε

p,q) = 1.
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Figure 3.6. Simulations on the left (resp. right) have parameters p = q = 0.9
(resp. p = 0.5 and q = 0.6). Faces are colored acccording to their heights, with
colors that repeat periodically.

Cε
p,q

Cε
p,q

DR

zp,q

y

x

Figure 3.7. Representation of the set described in Proposition 3.3. The level set
Lh is included in the colored area for some value of R ∈ R∗

+ depending on h.

Proof : Let ε, ε0 > 0 be such that 0 < ε0 < |zp,q|ε. Lemma 3.1 implies that almost surely, there
exists R0 ∈ R∗

+ such that, for all θ ∈ [0, 2π[ and r ≥ R0 satisfying (r cos(θ), r sin(θ)) ∈ Z2,∣∣∣∣Xr cos(θ) + Yr sin(θ)

r
− ⟨zp,q, eiθ⟩R2

∣∣∣∣ ≤ ε0. (3.3)
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We set R = max
(
R0,

2(|h|+1)
|zp,q |ε−ε0

)
, and let (n,m) ∈ Z2 \DR be such that (n,m) /∈ Cε

p,q. There exist

r ∈ R∗
+ and θ ∈ [0, 2π[ such that (n,m) = (r cos(θ), r sin(θ)), with r > R and

∣∣⟨eiθp,q , eiθ⟩R2

∣∣ > ε.
Then we have

∣∣⟨zp,q, eiθ⟩R2

∣∣ > |zp,q|ε, and∣∣∣∣H (
n+

1

2
,m+

1

2

)∣∣∣∣ ≥
∣∣Xr cos(θ) + Yr sin(θ)

∣∣
2

− 1

≥ r

2

∣∣∣∣∣
∣∣∣∣∣
∣∣Xr cos(θ) + Yr sin(θ)

∣∣
r

− ⟨zp,q, eiθ⟩R2

∣∣∣∣∣− ∣∣∣⟨zp,q, eiθ⟩R2

∣∣∣ ∣∣∣∣∣− 1.

By (3.3) and the fact that
∣∣⟨zp,q, eiθ⟩R2

∣∣ > |zp,q|ε > ε0, we deduce that∣∣∣∣H (
n+

1

2
,m+

1

2

)∣∣∣∣ ≥ r

2

( ∣∣∣⟨zp,q, eiθ⟩R2

∣∣∣− ε0

)
− 1

≥ r

2
(|zp,q|ε− ε0)− 1.

Finally, the choice of R implies that∣∣∣∣H (
n+

1

2
,m+

1

2

)∣∣∣∣ > |h|,

so that
Lh ⊂ DR ∪ Cε

p,q.

□

Note that Proposition 3.3 implies that for all z ∈ Z2, if the event {Γz is simple} has positive
probability, then conditionally on this event, we have

lim
n→+∞

Γ+
n

|Γ+
n |

∈ {eiθ̃p,q , e−iθ̃p,q} a.s. and lim
n→+∞

Γ−
n

|Γ−
n |

∈ {eiθ̃p,q , e−iθ̃p,q} a.s., (3.4)

where θ̃p,q = θp,q+
π
2 (modulo 2π). Using one more time the height function, and the following easy

lemma, we can have a more precise result in Lemma 3.5.

Lemma 3.4. Let (n,m), (n′,m′) ∈ Z2
e be such that H

(
n+ 1

2 ,m+ 1
2

)
= H

(
n′ + 1

2 ,m
′ + 1

2

)
. We

have:
• if n = n′, then Ym = Ym′,
• if m = m′, then Xn = Xn′ .

Proof : Suppose that n = n′. Since Xn and Ym are integers, we have

|Ym − Ym′ | ≤ 1.

Furthermore, since m and m′ have the same parity, we have

|Ym − Ym′ | ∈ 2Z,

and so finally Ym = Ym′ . The case m = m′ is treated in the same way. □

Lemma 3.5. Suppose that p ≥ q ≥ 1
2 and p ̸= 1

2 . Let Γ be a bi-infinite simple path, and let z ∈ Γ.
We set Γ+

z = (x+i , y
+
i )i∈Z+ and Γ−

z = (x−i , y
−
i )i∈Z+. lim

i→+∞
x+i = lim sup

i→+∞
y−i = +∞

lim
i→+∞

x−i = lim inf
i→+∞

y+i = −∞
or

 lim
i→+∞

x+i = lim inf
i→+∞

y−i = −∞

lim
i→+∞

x−i = lim sup
i→+∞

y+i = +∞ . (3.5)

Consequently, Γ intersects at least one time any vertical line.
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This lemma and (3.4) imply that, for all (p, q) ̸= (12 ,
1
2) and z ∈ Z2, if the event {Γz is simple}

has positive probability, then conditionally on this event, we have

lim
n→+∞

Γ+
n

|Γ+
n |

= − lim
n→+∞

Γ−
n

|Γ−
n |

a.s. (3.6)

Figure 3.8. Lemma 3.5 excludes the possibility of having a bi-infinite simple path
whose forward and backward paths go to the same direction (like the blue one here),
almost surely. This implies that each bi-infinite simple path has at most two neigh-
bors, one on each side. This could have been proved using Theorem 2 of Burton and
Keane (1991). Proposition 3.6 gives a more precise result: in fact, there are exactly
two neighbors, one on each side.

Proof : Assume without loss of generality that the level of Γ is 0. Proposition 3.3 ensures that

both limits lim
i→+∞

x+i and lim
i→+∞

x−i exist and are in {−∞,+∞}.

Now we prove that lim
i→+∞

x−i = − lim
i→+∞

x+i by contradiction. Suppose without loss of generality

that
lim

i→+∞
x+i = lim

i→+∞
x−i = +∞.

The random walk (Xi)i∈Z is either recurrent or transient. In both cases, we have lim sup
i→+∞

Xi = +∞.

So since lim
i→+∞

x+i = +∞, we have lim sup
i→+∞

Xx+
i
= +∞. For all i ∈ Z+, we have

H

(
x+i +

1

2
, y+i +

1

2

)
∈ {0, 1},

therefore we have lim inf
i→+∞

y+i = −∞. Similarly, we have lim inf
i→+∞

y−i = −∞.

Now we want to construct a sequence of distinct integers (mi)i∈Z+ such that, for all i ∈ Z+,
Ymi = Ym0 , which will be in contradiction with the transience of the random walk (Yi)i∈Z+ . Since
lim

i→+∞
x+i = lim

i→+∞
x−i = +∞, then we can find n0,m0,m1 ∈ Z such that

• (n0,m0) ∈ Γ+
z ∩ Z2

e and (n0,m1) ∈ Γ−
z ∩ Z2

e,
• both Γ+

(n0,m0)
and Γ−

(n0,m1)
do not intersect the vertical line x = x+0 ,

see Figure 3.9. Without loss of generality, we suppose that m1 < m0. Since (n0,m0), (n0,m1) ∈
Z2
e∩Γz, then the faces (n0+

1
2 ,m0+

1
2) and (n0+

1
2 ,m1+

1
2) are black and have height 0. Therefore,

by Lemma 3.4, we have
Ym0 = Ym1 .

Now, since lim inf
i→+∞

y+i = −∞, then the path Γ+
(n0,m0)

intersects the horizontal line y = m1, so there

exists n1 > n0 such that (n1,m1) ∈ Γ+
(n0,m0)

∩ Z2
e. Since Γ−

(n0,m1)
cannot intersect neither Γ nor

the vertical line x = z1, then there exists m2 ∈ Z such that (n1,m2) ∈ Γ−
(n0,m1)

and m2 < m1, see
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Figure 3.9. By iterating this procedure, we can construct two sequences (ni)i∈Z+ and (mi)i∈Z+ such
that (mi)i∈Z+ is decreasing, and for all i ∈ Z+:

H

(
ni +

1

2
,m2i +

1

2

)
= H

(
ni +

1

2
,m2i+1 +

1

2

)
= H

(
ni+1 +

1

2
,m2i+1 +

1

2

)
= H

(
ni+1 +

1

2
,m2i+2 +

1

2

)
.

By Lemma 3.4, this implies that
∀i ∈ Z+, Ymi = Ym0 .

Since the random walk (Yi)i∈Z+ is transient, it is a contradiction. □

x1

(n0,m0)

(n0,m1) (n1,m1)

(n1,m2)

Figure 3.9. Illustration of the construction of the sequence (mi)i∈Z+ . The red
curve is a schematic representation of Γ.

Now we can prove the last part of our main result:

Proposition 3.6. Let p ≥ q ≥ 1
2 , p ̸= 1

2 and h ∈ Z. Then there almost surely exists a unique
bi-infinite simple path Γ of level h. Moreover, if z ∈ Γ ∩ Z2

e, then we have

lim
n→+∞

Γ+
n

|Γ+
n |

= eiθ̃p,q and lim
n→+∞

Γ−
n

|Γ−
n |

= e−iθ̃p,q a.s.,

where Γ+
0 = z.

Proof : Existence. Let l be the vertical line {1
2}×R. For all n ∈ Z, we denote by Fn the face of center

(12 , n+ 1
2), and by en the edge adjacent to Fn and Fn+1. Note that each open edge intersecting l is

adjacent to a face of this sequence. Since we have

lim
i→+∞

Yi = − lim
i→−∞

Yi = +∞,
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then identifying a face to its center, we have

lim
n→+∞

H(Fn) = − lim
n→−∞

H(Fn) = +∞. (3.7)

This implies that the line l has only a finite number of intersections with level h paths.
Now let us prove that the line l has an odd number of intersections with level h paths. The height

function has a discrete continuity property, that is

∀x, y ∈ Z2 +

(
1

2
,
1

2

)
, if ||x− y||1 ≤ 1 then |H (x)−H (y)| ≤ 1.

In addition with (3.7), it implies that the set

Ih = {n ∈ Z : (H(Fn), H(Fn+1)) ∈ {(h, h+ 1), (h+ 1, h)}}.

is non-empty, finite and its cardinal is an odd number. Precisely, if we denote by I+h the set {n ∈
Z : (H(Fn), H(Fn+1)) = (h, h+1)} (resp. by I−h the set {n ∈ Z : (H(Fn), H(Fn+1)) = (h+1, h)}),
then we have card(I+h ) = card(I−h ) + 1, so that card(Ih) = 2 card(I−h ) + 1. The edges (en)n∈Ih are
exactly the edges that intersect l and belong to a level h path. Therefore, there is an odd number
of intersections between level h paths and l.

Now to conclude, note that finite cycles have an even number of intersections with line l, so there
exists at least one level h bi-infinite simple path that intersects l.
Unicity.

Let us prove the unicity by contradiction. Suppose that there exist two level h bi-infinite simple
paths Γz0 and Γz1 . As they are both in a same "full cone" DR + Cε

p,q a.s., at least two of the
four half-paths Γ+

z0 , Γ
−
z0 , Γ

+
z1 and Γ−

z1 are in the same "half-cone". Therefore, we can use these two
half-paths to construct a sequence (mi)i∈Z+ of distinct integers, as in the proof of Lemma 3.5, such
that

∀i ∈ Z+, Ymi = Ym0 ,

see Figure 3.10 for an illustration. Since the random walk (Yi)i∈Z+ is transient, it is a contradiction.
Direction.

By the two preceding points, we can consider Γ, the unique level h bi-infinite simple path.
We saw that Ih is finite and Γ intersects l, so we can define Mh = max(Ih). By the discrete
continuity property and the fact that lim

n→+∞
H(Fn) = +∞, we have Mh ∈ I+h . Now let us define

Nh = max{n ∈ Ih : en ∈ Γ}. Between the edges eMh
and eNh

, all the edges of Ih belong to
finite cycles that are above Γ, since they cannot cross it. Since each finite cycle that intersects l is
contributing to Ih with the same number of couples (h, h+1) and (h+1, h), we have also Nh ∈ I+h .

Let us consider the smallest n > Nh such that en belongs to a bi-infinite simple path. All the
edges between eNh

and en belong to finite cycles, therefore we have H(FNh+1) = H(Fn) = h + 1.
Moreover, by the discrete continuity property and the unicity of the level h bi-infinite simple path,
we have H(Fn+1) = h+2. More generally, there exist infinitely many bi-infinite simple paths above
and below Γ. Moreover, the upper neighbor of Γ has level h + 1, and its lower neighbor has level
h− 1.

Finally, note that the choice of orientation we made for Γ (see Subsection 2.2) implies that the
faces with height h+ 1 are on the right side of the path. This implies that, for any z ∈ Γ ∩ Z2

e, Γ+
z

ends in the half-plane {x ≤ 0}, which proves the last point. □

We finish by discussing about the distribution of the sequences ξ and η. We assumed these
sequences to be i.i.d., but in fact we could take ξ and η as two independent ergodic stationary
Markov chains on {−1, 1}, the first one having (1− p, p) as stationary distribution, the second one
having (1− q, q). Birkhoff’s ergodic theorem would play the role of the law of large numbers in the
proofs.
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x

y

(n0,m1)

(n0,m0)

(n1,m1)

(n1,m2) (n2,m2)

(n2,m3) (n3,m3)

Γ0

Γ1

Figure 3.10. Construction of the sequence (mi)i∈Z+ .
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