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Abstract. This article presents different recent theoretical results illustrating the interactions be-
tween probability and algorithmics. These contributions deal with various topics: cellular automata
and calculability, variable length Markov chains and persistent random walks, perfect sampling via
coupling from the past. All of them involve discrete dynamics on complex random structures.

Résumé. Cet article présente différents résultats récents de nature théorique illustrant les interactions
entre probabilités et algorithmique. Ces contributions traitent de sujets variés : automates cellulaires et
calculabilité, chaînes de Markov à mémoire variable et marches aléatoires persistantes, échantillonage
parfait par la méthode de couplage par le passé. Leur point commun est de faire intervenir des
dynamiques discrètes sur des structures aléatoires complexes.

Probability and algorithmics are two domains that mutually enrich each other. On the one hand, the analysis
of algorithms naturally involves the study of random discrete objects. On the other hand, in order to study
and generate complex combinatorial structures, one often needs to develop sophisticated algorithms. In that
context, a topical question is also the classification of probability distributions that can be described with the
help of different models of computation.

This article presents some recent theoretical results illustrating the interactions between probability and
algorithmics. It is the reflect of the session of the Journées MAS 2016 entitled “Probability and Algorithmics”.
The three sections are based on the talks given in Grenoble on this occasion by Mathieu Sablik, Peggy Cénac,
Christelle Rovetta, and Rémi Varloot. Irène Marcovici, the organizer of that session of the Journées MAS 2016,
has written the introduction and coordinated the present article.

Section 1 is an introduction to the advances of Mathieu Sablik on the possible asymptotic measures that
can be reached by a cellular automaton.a Cellular automata are used to model all kinds of phenomena with
local interactions that appear in biology, physics, or theoretical computer science. S. Wolfram [52] was the
first to propose a classification of cellular automata, based on the observation of space-time diagrams. His
empirical classification was then followed by many other attempts, the aim being to understand the complex
phenomena that can appear. Here, we focus on the typical asymptotic configurations observed from a random
initial configuration. They are described by the set of limit measures. From a modelisation point of view, this
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set corresponds to the set of measures that are “physically” relevant, starting from a simple measure such as the
uniform Bernoulli measure. From a computer science point of view, cellular automata can be seen as a model
of computation with high parallelism and it is natural to study the possible complexities of the asymptotic
behavior, and its dependence on the initial distribution.

Section 2, presented by Peggy Cénac, provides a short zoology of variable length Markov chains, with neces-
sary and sufficient conditions for existence and uniqueness of invariant measure. Such conditions can be related
to recurrence/transience properties of random walks built from Markov chains with unbounded memory. We
will follow some examples illustrating the unstable nature of the random walk behavior under slightly disturbed
settings. The works described in this section are extracted from two reference articles [10,11].

Section 3 is based on works of Christelle Rovetta and Rémi Varloot on perfect sampling. In [42], Propp
and Wilson have introduced the coupling from the past method to generate random variables according to the
stationary distribution of a given Markov chain. The advantage over the classical Monte Carlo approach is that
it provides a perfect sampling algorithm: it gives an actual algorithm that terminates in finite expected time,
as opposed to a converging algorithm, and the output distribution is unbiased, rather than arbitrarily close to
the target distribution. This initially comes at an important cost in complexity, which becomes proportional
to the size of the state space. Different strategies have been introduced so as to remove this dependency and
achieve acceptable complexity. The basic building blocks for such strategies are presented, alongside two recent
applications stemming from collaborations with Anne Bouillard and Ana Bušić. The first is a novel means of
sampling from the stationary distribution of closed queueing networks in an efficient way [4]. The second is an
approach to speed up the simulation of “very lazy” random walks, i.e. random walks for which the probability
of changing states during any given transition is small [47], presented here in the context of sampling random
independent sets from a graph.

1. Limit measures of cellular automata: a computational approach
In this section, we present (in a simplified version) some new advances on the study of typical asymptotic

measures obtained when iterating a cellular automaton from some initial measure. There are two possible
approaches for the study of the sets of limit measures of cellular automata:

‚ taking a class of cellular automata having empirically the same typical asymptotic behavior, and trying
to determine their sets of limit measures;

‚ characterizing sets of measures that can be reached as sets of limit measures for some cellular automata.
In Subsection 1.1, we recall the main definitions and present some results about the asymptotic measures for

some classes of cellular automata. Generally, one observes a behavior on space-time diagrams, and then tries
to determine the set of limit measures for this class. This type of study can be difficult and often requires to
develop new tools for each class that is considered.

In Subsection 1.2, we are interested in characterizing the limit measures that can be reached asymptotically
when iterating a cellular automaton from some initial measure. A first step is to determine some obstructions,
that is, some necessary conditions that these measures must satisfy. As cellular automata are model of compu-
tation, in addition to the classical topological obstructions, some necessary computational obstructions appear.
The main problem is to prove a reverse statement: given a measure satisfying the computational obstructions,
we want to construct a cellular automaton which, starting from any simple initial measure, reaches this mea-
sure asymptotically. Similar computational obstructions appear in topological dynamics, when characterizing
possible properties of subshifts of finite type or cellular automata: possible entropies [29], possible growth-type
invariants [38], possible sub-actions [1,28]... However, the construction is quite different here, since starting from
a random configuration, the construction requires an ability to self-organize the space. The results presented
here are part of a collaboration with Benjamin Hellouin de Menibus [25].

In the last subsection we give some perspectives and open questions.
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1.1. Definitions and study of some classes of cellular automata
1.1.1. Problematic

A cellular automaton is a complex system defined by a local rule which acts synchronously and uniformly on
the configuration space AZ, where A is a finite alphabet. Formally, it is a function F : AZ Ñ AZ defined by a
local rule F : Ar´r,rs ÝÑ A, where r P N is called the radius, such that:

F pxqi “ F pxri´r,i`rsq for all i P Z.

Equivalently, cellular automata are exactly continuous functions which commute with the shift map σ : AZ Ñ
AZ, defined by σpxqi “ xi`1 for all x P AZ and i P Z.

Example 1.1. Let A “ t0, 1u and consider the cellular automaton defined by

F pxqi “ xi´1 ` xi ` xi`1; [mod 2] for all i P Z.

Given an initial configuration, a representation of the behavior of this cellular automaton is given by the super-
position of the different configurations obtained by iteration of the dynamics. Figure 1.1 shows an example of
such a space-time diagram, starting from a random initial configuration (represented at the bottom).

Figure 1.1. Space time diagram of the cellular automaton defined by F pxqi “ xi´1 ` xi `
xi`1 [mod 2] for all i P Z.

Cellular automata are simple models but have a wide variety of different dynamical behaviors. We are
interested in their typical asymptotic behavior starting from a random configuration, as observed on simulations.
We consider that the space of configurations is homogeneous. This is rendered by an initial configuration chosen
randomly according to a σ-invariant measure µ, meaning that µpBq “ µpσ´1pBqq for any Borel set B. Denote
by MσpAZq the set of σ-invariant measures. This space is compact and metrizable for the weak˚ topology. We
consider here the following metric:

dMpµ, νq “
ÿ

nPN

1
2n max

uPAn
|µprusq ´ νprusq|,

where rus “
 

x P AZ : xr0,n´1s “ u
(

is the cylinder centered on the word u P An.
For simulations, the initial configuration is generally chosen randomly according to a Bernoulli measure: the

probability that a cell has the value a P A is pa P r0, 1s, independently for different cells. In other words,
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the Bernoulli measure associated to ppaqaPA with
ř

aPA pa is defined by λppaqaPAprusq “ pu0pu1 . . . pun´1 for all
u P An. For the uniform Bernoulli measure, all the parameters are chosen to have the same value pa “ 1

CardA ,
we denote it λAZ . It is also possible to define measures with finite ranges of spatial dependences, thanks to
Markov processes.

Another important class of measures consists in the σ-invariant measures supported by periodic orbits: for
w P An, we denote by 8w8 the σ-periodic configuration associated to w, and we define:

xδw “
1
|w|

ÿ

iPr0,|w|´1s
δσip8w8q, where δx is the Dirac measure in x P AZ.

Let us recall that A˚ denotes the set of words on the alphabet A. Even if the measure xδw is algorithmically
simple, the set

!

xδw : w P A˚
)

is dense in MσpAZq.
Most of the results we obtain are not restricted to Bernoulli initial measures. A measure is σ-ergodic if

σ-invariant sets have measure 0 or 1. We denote by Mσ´ergpAZq the set of σ-ergodic measures. By Birkhoff’s
theorem, the frequency of a word u P An in a random configuration chosen according to a σ-ergodic measure
is equal to the measure of the cylinder rus (see [46] for details). Sometimes, we also need to evaluate the
independence of cells in a random configuration. A measure is full support if all cylinders are charged, and we
denote by Mfull

σ pAZq the set of σ-invariant measures of full support.
Since a cellular automaton F commutes with the shift, it acts naturally on MσpAZq by:

F˚ : MσpAZq ÝÑ MσpAZq
µ ÞÝÑ F˚µ such that F˚µpBq “ µpF´1pBqq for any Borel set B.

The measure F t˚µ represents the measure obtained at time t when iterating the cellular automaton F from
the initial measure µ. For an initial measure µ P MσpAZq, we are interested in the asymptotic behavior of the
sequence pF t˚µqtPN, and of its Cesàro mean, defined by ϕFt µ “ 1

t`1
řt
i“0 F

i
˚µ. In particular, we focus on the

following sets of limit points, which are non-empty, by compactness of MσpAZq:
‚ the µ-limit measures set VpF, µq, defined as the set of limit points of the sequence pF t˚µqtPN;
‚ the Cesàro mean µ-limit measures set V 1pF, µq, defined as the set of limit points of pϕFt µqtPN.

The union of the support of the µ-limit measures set corresponds to the µ-limit sets introduced in [34] in
a different way. Very complex µ-limit sets can be constructed [6, 7], and the construction of Subsection 1.2 is
partly inspired from these works.

1.1.2. Equicontinuous dynamics
The notions of equicontinuity and equicontinuous points in some directions, introduced in [45], allow to detect

some rigidity in a particular direction. In that case, it is easy to obtain informations on the µ-limit measures
sets, which are σ-invariant (see Figure 1.2 for some examples). Given a direction α P R, we say that

‚ F is equicontinous if for all e P N there exists d P N such that xr´d,ds “ yr´d,ds ùñ Fnpσtnαupxqqr´e,es “

Fnpσtnαupyqqr´e,es for all n P N,
‚ x P AZ is an equicontinous point of F if for all e P N, there exists d P N such that xr´d,ds “ yr´d,ds ùñ

Fnpσtnαupxqqr´e,es “ Fnpσtnαupyqqr´e,es for all n P N. In this case, the word xr´d,ds is said a blocking
word.

Nilpotence. A cellular automaton F is nilpotent if there exists k P N and a P A such that F kpxq “8 a8 for
all x P AZ. This is equivalent to having two different directions of equicontinuity. In this case, VpF, µq “

!

pδa

)

for all µ P MσpAZq.
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Equicontinuity. If a cellular automaton F is equicontinuous of direction α, then it is ultimately periodic in
this direction. Thus, there exist k, p P N such that

VpF, µq “
 

F k`i˚ µ : i P r0, p´ 1s
(

.

Equicontinuous points in two directions. If a cellular automaton F has equicontinuous points in two
directions, there exists a P A such that VpF, µq “

!

pδa

)

for all µ P Mfull
σ´ergpAZq (see Theorem 4.8 of [45]).

Equicontinuous points in one direction. If a cellular automaton F has equicontinuous points in one di-
rection, there exists a word u, called a blocking word, such that for any word v, all the configurations in the
cylinder ruvus have the same ultimate periodic behavior in direction α. In this case, V 1pF˚, µq is a singleton
when µ P Mfull

σ´ergpAZq, and we have some information on the limit measure [3, 21].

Remark 1.1. In the last two classes, the condition of full support can be weakened by considering an initial
measure charging a blocking word. Moreover, the notion of equicontinuous points can be relaxed by the notion
of µ-equicontinous points, which takes into account the initial measure [45].

Nilpotent: all directions Equicontinuous Equicontinuous points Equicontinuous points
are equicontinuous of direction α “ 0 for directions in r´1, 1s of direction α “ 0

A “ t0, 1u A “ t0, 1u

F pxqi “ xi ` xi´1xi`1rmod2s F pxqi “ xi´1xixi`1rmod2s

Figure 1.2. Examples of cellular automata that are equicontinuous or have equicontinuous points.

1.1.3. Cellular automata with particles
For some cellular automata, starting from a random configuration, a system of interacting particles emerges.

Particles correspond to interfaces between homogenous zone in the space time diagram. Generally, in this case,
there is convergence towards a “simple” measure (see Figure 1.3 for some examples).

An interesting example is given by the following gliders cellular automaton, defined on the alphabet t0, L,Ru.
Under the action of the gliders cellular automaton, the letter L is shifted to the left, the letter R is shifted
to the right, and two letters disappear if they intersect. It is shown in [2] that for µ P Mσ´ergpAZq, one has
VpF, µq “ tνu, with: ν “ pδ0 if µprLsq “ µprRsq; ν P Mσ

`

t0, LuZ
˘

if µprLsq ą µprRsq; and ν P Mσ

`

t0, RuZ
˘

if
µprLsq ă µprRsq.

Another interesting example is the n-states cyclic cellular automaton on the alphabet t0, . . . , n´ 1u, defined
by Fnpxqi “ xi ` 1rmod ns if xi´1 or xi`1 is equal to xi ` 1rmod ns, and Fnpxqi “ xi otherwise. For the 3-
states cyclic cellular automaton, if µ is a Bernoulli measure, one has VpF3, µq “ tµpr2sq pδ0`µpr0sq pδ1`µpr1sq pδ2u

(see [24] Section 2.3 for a proof). For the 4-states cyclic cellular automaton, one has VpF4, µq “ tα0 pδ0 `α1 pδ1 `

α2 pδ2`α3 pδ3u but the value of the parameters αi are unknown. For n ě 5, n-states cyclic cellular automata have
µ-equicontinuous points.

We refer to [26] for more examples and references. In this article, we focus on qualitative and quantitative
properties of the set of µ-limit measures for cellular automata having a system of particles with good collision
properties.
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Gliders CA Rule 184 or traffic rule One-sided captive Another one-sided captive

3-states cyclic CA 4-states cyclic CA 5-states cyclic CA Random walk CA

Figure 1.3. Examples of cellular automata with emergence of particles (the typical asymptotic
behavior is described in [26]).

1.1.4. Algebraic cellular automata
When A is a finite group, if the cellular automaton F is a group morphism for the product group AZ, we

say that F is linear (the cellular automaton of Example 1.1 was such a linear cellular automaton). In this case,
a randomisation phenomenon appears: as soon as the initial measure is in a large class which contains Markov
measures, the Cesàro mean sequence converges to the uniform Bernoulli measure [18,36,37,41]. In other words,
V 1pF, µq “ tλAZu. In some simple cases, it is possible to describe VpF, µq with the help of the convolution
measure of µ (see [24], Chapter III).

1.2. Possible convergence towards a unique measure
The first natural question is to determine what are the measures that can be reached asymptotically by the

iteration of a cellular automaton from an initial measure. Given a measure ν, this measure is clearly reached
asymptotically if we iterate the identity cellular automaton from this measure. In fact, the question is not
precise enough: we want to determine the measures that are reached asymptotically starting from a large class
of measures, for example, starting from all Bernoulli measures.
Computability obstruction. As cellular automata can be seen as models of computation, computability
obstructions naturally appear. A function f : A˚ Ñ B˚ is computable if there exists an algorithm which, for a
given word u over the alphabet A given as input, returns the word fpuq over the alphabet B. This definition
can be generalized to N, Q or A˚ ˆ N, by the introduction of a natural encodage. We distinguish two notions
of computable measure, depending on whether we know or not the speed of convergence of the algorithm
approximating the measure.

Definition 1.1. A measure µ P MσpAZq is
‚ computable if there exists a computable function f : A˚ ˆ NÑ Q such that

|µprusq ´ fpu, nq| ă 2´n;

‚ limit-computable if there exists a computable function f : A˚ ˆ NÑ Q such that

lim
nÑ8

fpu, nq “ µprusq.

The set of computable (resp. limit-computable) measures is very large, even if it is countable, since the
number of programs is countable. Let us present some examples:
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‚ any measure supported by a periodic orbit is computable;
‚ any Bernoulli measure or Markov measure with computable (resp. limit-computable) parameters is
computable (resp. limit-computable);

‚ if an effective subshift (i.e. a subset of AZ for which the set patterns which does not appear in a
configuration can be enumerated by a Turing machine) has a unique σ-ergodic measure µ, then µ is
computable.

The image of a computable measure by a cellular automaton F of radius r is computable. Indeed, given
a word u P An, one can compute the set of words in An`2r which are pre-images of u, and for each of these
words, one can compute an approximation of the measure of the corresponding cylinder. One thus obtains an
approximation of F˚µprusq, with a bound on the error. As a consequence, we obtain the following obstruction
for the limit.

Proposition 1.1. Let F : AZ Ñ AZ be a cellular automaton. If µ P MσpAZq is computable and Fn˚ µ ÝÑ
nÑ8

ν,
then ν is limit-computable.

Theorem of realization. In fact, there is no other obstruction: given a limit-computable measure ν, it is
always possible to “program” a cellular automaton forcing the convergence to the limit ν starting from any
σ-ergodic measure of full support. This is given by the following realization theorem.

Theorem 1.1 (see [25]). Let ν P MσpAZq be a limit-computable measure, there exists a cellular automaton
F : BZ Ñ BZ with A Ă B such that for all µ P Mσ´ergpBZq of full support, one has

lim
nÑ8

Fn˚ µ “ ν.

The property for a measure ν P MσpAZq to be limit-computable is equivalent to the existence of a sequence
pwnqnPN of words, enumerated by an algorithm, such that yδwn

ÝÑ
nPN

ν. The idea of the proof is thus to construct
a cellular automaton enumerating the words pwnqnPN and copying them successively on the space. In order to
do so, we extend the initial alphabet with auxiliary states. The dynamics of this cellular automaton, described
in [25], is very simple. It consists in three different phases, which coexist:

Formatting: Computation takes place on segments, defined as regions of Z located between two symbols
W , that play the role of walls, and persist in time except under special circumstances. Since we

have no control over the initial content of each segment, we first want to format them, that is, to erase
uninitialized content of auxiliary states which can perturb the computation. A segment is said to be
initialized if the walls come from a special state I , which can only appear in the initial configuration,
and send a signal to the right. This signal deletes all auxiliary states until finding another initialized
wall W . The difficult task is to distinguish uninitialized walls from initialized walls. To do that, the
right signal sent by I keeps track of its age using a binary counter. Meanwhile, each initialized wall
also keeps track of its age under the form of a binary counter to its left, incrementing at each step.
Counters already present in the initial configuration (uninitialized) have a nonnegative value at time
0, whereas those created by a symbol I (initialized) have value 0 at time 1, and they increment at
the same rate. Thus, uninitialized walls have older time counters, and by comparing time counters and
formatting counters as they cross, we can erase older counters and uninitialized walls. This version with
binary counter is detailed in [25], there exists also a geometric version of this process of formatting,
described in [5, 6, 15]

Computation and copy: A Turing machine is simulated in a small part of the segment. Precisely, if the
segment has size k, the Turing machine needs a length opkq of space for the computation. In [25], the
space is delimited by the time counter, whereas in [5,6], the size of the segment is measured by a signal,
and a small part is used to simulate the Turing machine, whose evolution can be seen as a particular
cellular automaton. The machine considered computes successively each wn on the part allowed for the
computation. When a word wn is produced, concatenated copies are written progressively on all the
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segment. By the process of copying, the cellular automaton produces a sample of yδwn
on the segment

associated.
Merging: In order to have larger and larger domains of computation with a low density of auxiliary

states, a segments of size k merges with a neighboring segment, when we need more than opkq cells
for auxiliary states. Different processes of merging can be proposed, either unsynchronized as in [6],
or synchronized as in [25]. When walls are destroyed in the merging process, only the computation of
destroyed walls are stopped. The sample written on the newly merged segment can be only deleted by
a copy of a new sample computed with more space.

It remains to prove the convergence towards ν. In short, for a given ε and a word u P Al, there exists K such
that |yδwk

prusqq ´ νprusq| ă ε for all k ě K. By the merging process, for a time n large enough, with probability
larger than 1´ ε, the pattern Fnpxqr0,l´1s is in a sufficiently large segment which allows to have enough space
to compute wK , and where the density of auxiliary states is less than ε (this is possible since auxiliary states
occur in a negligible part of the segment compared to its size). Thus, with probability 1´ ε, the configuration
Fnpxqr0,l´1s contains auxiliary states, or is a part of a sample composed of successions of wk for some k ě K.
We deduce that for sufficiently large n, one has max

kěK
|Fn˚ µprusq´

yδwk
prusqq ă 2ε. Thus, |Fn˚ µprusq´νprusq| ÝÑ

nÑ8
0.

1.3. Some further directions of research
1.3.1. What are the possible sets of limit measures?

Generally, the sequence pFn˚ µqnPN does not converge. So, the second step in the problematic is to determine
the set of limit points, denoted by VpF, µq. By compactness of MσpAZq, it is a non-empty set. Some neces-
sary conditions can be described using the setting of computable analysis on metric spaces (the formalism is
introduced in [48]). In [25], the authors give a partial characterization when the set VpF, µq is connected.

Open question 1.1. What are the sets of measures that can be reached asymptotically iterating a measure by
a cellular automaton?

1.3.2. What happens if we do not allow additional letters?
The theorem of realization of Section 1.2 uses additional states to encode the different processes. In particular,

we need a special symbol, denoted by I , that only appears in the initial configuration. What can we do if we
do not allow additional states in the construction? Given a limit-computable measure ν, we want to construct
a cellular automaton defined on AZ, which realizes ν as limit measure. If ν does not charge a word u, it is
possible to code auxiliary states using this word and we obtain the following corollary.

Corollary 1.1 (see [25]). Let ν P MσpAZq be such that there exists a word u which is not charged by ν. Then,
there exists a cellular automaton F : AZ Ñ AZ such that for all σ-ergodic measure µ P MσpAZq of full support,
one has

lim
nÑ8

Fn˚ µ “ ν.

If µ is full support, the cellular automaton constructed must be surjective, since every word has pre-images.
In fact, there is no hope having a result similar to Corollary 1.1: indeed, the uniform Bernoulli measure is
invariant by surjective cellular automata, so it is the only limit measure that can be reached starting from the
uniform Bernoulli measure. The following question remains.

Open question 1.2. What are the limit measures that can be reached by surjective cellular automata?

The difficulty is that we cannot initialize the computation by a special pattern that would appear only in the
initial configuration. In fact, there are some other obstructions that are not well understood yet. For example,
the action of a surjective cellular automaton on random configurations preserves the quantity of information.
Formally, this means that the metric entropy of the shift according to µ P MσpAZq, denoted by hµpσq, is equal
to the metric entropy according to F˚µ (see [32]). By the semi-continuity of the entropy, the limit measures
can only have a greater entropy than the initial measure. The following obstruction follows.
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Proposition 1.2. Let F : AZ Ñ AZ be a surjective cellular automaton and let µ P MσpAZq. If Fn˚ µ ÝÑ
nÑ8

ν,
one has hνpσq ě hµpσq.

We remark that this obstruction implies the obstruction given by the uniform Brenoulli measure since it is
the unique measure of maximal entropy.

1.3.3. What is the speed of convergence?
In Theorem 1.1, we can estimate the speed of the convergence to ν. The merging process used in [25] is very

slow and might be improved for some classes of measures. A natural question is to determine what are the
classes of measures that can be quickly reached, and we can wonder if this property is related to the algorithmic
complexity of the measures.

Open question 1.3. What is the link between the algorithmic complexity of a measure and the best possible
speed of convergence towards this measure?

2. Bestiary of Variable Length Markov Chains and persistent random walks

2.1. Variable Length Markov Chains
2.1.1. Definition

Let us recall briefly the probabilistic presentation of Variable Length Markov Chains (VLMC), following [10]
(cf [44] and [14, pp. 117-134]). Introduce the set L “ A´N of left-infinite words on the alphabet A :“ td, uu or
A :“ t0, 1u and consider a complete tree on this alphabet, i.e. a tree such that each node has 0 or 2 children,
whose leaves C are (possibly infinite) words on A. The set C is supposed finite or countable. To each leaf c P C,
called a context, is attached a probability distribution qc on A. Endowed with this probabilistic structure, such
a tree is named a probabilized context tree. The related VLMC is defined as the Markov Chain on L whose
transitions are given by

PpUn`1 “ Un`|Unq “ qÐÝpref pUnqp`q, (2.1)
where ÐÝpref pwq P C is defined as the shortest prefix of w P L, when w is read from right to left, appearing as a
leaf of the context tree. In the example of Figure 2.4, on the left side, the context tree is finite of height 4 and,
for instance,

PpUn`1 “ Und|Un “ ¨ ¨ ¨ duduuudq “ qduupdq

because ÐÝpref p¨ ¨ ¨ duduuudq “ duu (read the word ¨ ¨ ¨ duduuud right-to-left and stop when finding a context).
The rightmost letter of the sequence Un P L will be denoted by Xn so that

@n ě 0, Un`1 “ UnXn`1.

The final letter process pXnqně0 is not Markov as soon as the context tree has at least one infinite context.
When the tree is finite, pXnqně0 is a Markov chain whose order is the height of the tree, i.e. the length of its
longest branch. The vocable VLMC is somehow confusing but commonly used.

Consider the probabilized context tree given on the right side of Figure 2.4, called Infinite Comb probabilized
context tree. For this model, [13] established a sufficient condition for the existence of a stationary probability
measure. In this case, there is one infinite leaf 08 and countably many finite leaves 0n1, n P N. The data of a
corresponding VLMC consists thus in probability measures on A “ t0, 1u:

q08 and q0n1, n P N.

Proposition 2.1. (Stationary probability measures for an infinite comb) Let pUnqně0 be a VLMC
defined by a probabilized infinite comb. Assume that q08p0q ‰ 1 (irreducible case). The Markov process pUnqně0
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Figure 2.4. Examples of probabilized context tree.

admits a stationary probability measure on L if and only if the numerical series
ř

cn defined by

cn “
n´1
ź

k“0
q0k1p0q

converges. Assuming the series
ř

cn converges, the stationary probability measure π on L is unique.
2.1.2. Towards the bestiary

The following propositions give some examples of VLMC admitting a stationary probability measure without
necessary and sufficient condition of series convergence.
Proposition 2.2 (Gallo Paccaut [19]). Let pUnqně0 be a VLMC. Assume there is a finite number of infinite
contexts. Moreover, assume there exists ε ą 0 such that

@c P C, @α P A, ε ă qcpαq ă 1´ ε.

Then the Markov process pUnqně0 admits a unique invariant measure.
Proposition 2.3 (Meyn and Tweedies [39]). Let pUnqně0 be a VLMC defined on A “ t0, 1u. Assume that

@c P C, @α P A, qcpαq ‰ 0, 1.

If 1 P C and for some integer a ě 1, 0a P C (or 0, 1a are in C), then the Markov process pUnqně0 admits a
unique invariant measure.

2.2. Persistent random walks
Classical random walks are usually defined from a sequence of independent and identically distributed (i.i.d.)

increments pXnqně1 by

S0 :“ 0 and Sn :“
n
ÿ

k“1
Xk for all integers n ě 1. (2.2)
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Figure 2.5. Assume that @c P C,@α P A, qcpαq ‰ 0, 1. For all these context trees, the Markov
process pUnqně0 admits a unique invariant measure without any condition. For the first and
the second tree, the existence and unicity is a consequence of Proposition 2.3. For the last tree,
called the bamboo blossom, an explicit formula for the invariant measure can be found in [10].
The existence and unicity can also be viewed as a corollary of Proposition 2.3. For the third
tree, a pedestrian and quite long calculation leads to an explicit formula as for the bamboo.

When the jumps are defined as a finite-order Markov chain, a short memory in the dynamics of the stochastic
paths is introduced and the random walk pSnqně0 itself is no longer Markovian. Such a process is called in the
literature a Persistent Random Walk (PRW), a Goldstein-Kac random walk or also a correlated random walk.
Concerning the genesis of the theory, we allude to [16,23,31,43,49,50] as regards the discrete-time situation but
also its connections with the continuous-time telegraph process and we refer to [27, 35] concerning recurrence
and transience features. Here, we aim at investigating the asymptotic behavior of one-dimensional PRW for
which the increments are driven by a VLMC (an infinite-order Markov chain) built from a probabilized context
tree. This construction furnishes an extented model for the dependence of the increments of PRWs which can
be easily adapted to various situations.

Let pUnqně0 be a VLMC defined on the alphabet A “ td, uu. The nth increment Xn of the corresponding
PRW is given as the latest letter of Un, with the one-to-one correspondance d “ ´1 (for a descent) and u “ 1 (for
a rise). Xn :“ `1 if Un “ Un´1u whereas Xn :“ ´1 if Un “ Un´1d. Different probabilized context trees lead
to different probabilistic impacts on the asymptotic behavior of resulting PRWs. Besides, the characterization
of the recurrent versus transient behavior, the so-called type problem, is difficult in general. Here, we state
exhaustive criteria for PRWs defined from a double-infinite comb context tree introduced in [9]. Roughly
speaking, the leaves – coding for the memory – are the words on td, uu » t´1, 1u of the form dnu and und. In
other words, the probability to invert the current direction depends only on its length. In addition, we derive
sufficient conditions for the type of PRWs built from a larger class of context trees obtained by some grafting
of the original double-infinite comb model. Foremost, we refer to Figure 2.7 that illustrates our notations and
assumptions by a realization of S, for the so called double-infinite comb PRW. In order to avoid trivial cases, we
assume that S cannot be frozen in one of the two directions with a positive probability – it makes infinitely many
U-turns almost surely. Besides, for the sake of simplicity, we deal throughout this paper with the conditional
probability with respect to the event pX0, X1q “ pu, dq – the initial time is suppose to be an up-to-down turn.
Obviously, there is no loss of generality supposing this and the long time behavior of S is not affected as well.
Therefore, we assume the following.
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Figure 2.6. Assume that @c P C,@α P A, qcpαq ‰ 0, 1. For all these context trees, with a bit
calculations, we prove that the Markov process pUnqně0 admits a unique invariant measure if
and only if a specific series converges.

n
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u d
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︷ ︸︸ ︷
U1 Y1 = M1 −M0

M1

M2

τd1

X0 = u X1 = d

τd2τu1 τu2

Figure 2.7. Persistent random walk

Assumption 2.1 (finiteness of the length of runs).

8
ź

k“1
p1´ qdkupuqq “ 0 (2.3)
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and symmetrically
8
ź

k“1
p1´ qukdpdqq “ 0. (2.4)

Let τ u
n and τ d

n be respectively the length of the nth rise and of the nth descent, that is

τ u
n “ inf

 

j ě τ d
n|Xj “ d

(

´ 1, τ d
n “ inf

 

j ě τ u
n´1|Xj “ u

(

´ 1.

Then, by the renewal property, pτ d
nq and pτ u

nq are independent sequences of i.i.d. random variables. In order
to deal with a more tractable random walk built with possibly unbounded but i.i.d. increments, we introduce
the underlying skeleton random walk pMnqně0 associated with the even U-turns – the orginal walk observed
at the random times of up-to-down turns. Note that the expectation dM of an increment Yn :“ τ u

n ´ τ d
n is

meaningful whenever one of the persistence times (at least) is integrable. In this situation, we can set (extended
by continuity whenever one of the persistence times is not integrable)

dS :“ Erτ u
1 s ´ Erτ d

1 s

Erτ u
1 s ` Erτ d

1 s
P r´1, 1s. (2.5)

In regards to the convergence (2.6) below, the latter quantity is naturally called the almost sure drift of the
double-infinite comb PRW S when it exists.

Proposition 2.4 (well-defined drift case (see [12])). Assuming 2.1, the double-infinite comb PRW S is recurrent
if and only if dS “ 0 and transient otherwise. Furthermore, one has

lim
nÑ8

Sn
n
“ dS a.s.. (2.6)

We consider the remaining case in which both Erτ u
1 s and Erτ d

1 s are infinite. Let us define

J`1|`2 :“
8
ÿ

n“1

nPpτ `1 “ nq
řn
k“1 Ppτ `2 ě kq

, (2.7)

for any `1 ‰ `2 P tu, du.

Theorem 2.1 (undefined drift case (see [12])). Assuming 2.1, the double-infinite comb PRW S is recurrent if
and only if Ju|d and Jd|u are both infinite. Moreover, if Ju|d “ 8 (resp. Jd|u “ 8), then

lim sup
nÑ8

Sn
n
“ 1 a.s.

ˆ

lim inf
nÑ8

Sn
n
“ ´1 a.s.

˙

. (2.8)

In particular, it is transient to 8 (resp. ´8) if and only if Ju|d (resp. Jd|u) is infinite.

The case when the characteristics Ju|d and Jd|u are both finite do not appear in the latter theorem since in
that situation it follows from [17] that the persistence times are both integrable and hence it reduces to the
well-defined drift case in Proposition 2.4.

Consider a double-infinite comb and attach to each finite leaf c another context tree Tc (possibly trivial)
as in Figure 2.8. The leaves of the related graft are denoted by Cc and this one is endowed with Bernoulli
distributions tq` : ` P Ccu on tu, du. Note that any probabilized context tree on tu, du can be constructed this
way. We denote by Sg the corresponding PRW. In that case, the random walk is particularly persistent, in the
sense that the rises and descents are no longer independent. A renewal property may persist but it is heavier
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Figure 2.8. Grafting of the double-infinite comb

to write in general. Let S and S be the double-infinite comb PRWs with respective transition

αu
n :“ suptqcpdq : c P Cundu, αd

n :“ inftqcpuq : c P Cdnuu,

and αu
n :“ inftqcpdq : c P Cundu, αd

n :“ suptqcpuq : c P Cdnuu. (2.9)

Lemma 2.1 (comparison of grafts). With probability one, one has

lim sup
nÑ8

Sn “ 8 ùñ lim sup
nÑ8

Sg
n “ 8 and lim inf

nÑ8
Sn “ ´8 ùñ lim inf

nÑ8
S g
n “ ´8.

As a consequence, if S and S are of the same recurrent or transient type, then S is recurrent or transient
accordingly. We can extend our results to some probabilized context trees satisfying Assumption 2.1, mainly
when the persistence times of S or S are both non-integrable.

Corollary 2.1 (extended criterion). Assume that there are a finite number of grafts to the double-infinite-
comb such that either S or S has running times of infinite mean. Then the general PRW Sg together with the
double-infinite comb PRWs S and S are of the same type.

3. The Coupling From the Past algorithm and two recent applications

3.1. Perfect sampling
Perfect sampling was introduced in 1996 by Propp and Wilson [42]. This technique allows one to generate

unbiased samples from the stationary distribution of an ergodic Markov chain over a finite state space. The key
feature is the use of coupled Markov chains originating from all possible states.

3.1.1. Markov automata
For the purpose of simulations, a Markov chain pXnqnPN with transition matrix P is represented by means of

a Markov automaton A (not to be confused with the cellular automata discussed in Section 1). In addition to
the state space S, A comprises a finite event space A, a distribution ρ and a transition function ¨ : S ˆA Ñ S.
The Markov chain pXnqnPN is obtained by generating an i.i.d. sequence pAnqnPN according to ρ, and recursively
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setting Xn`1 “ Xn ¨An`1. The sequence pXnqnPN is clearly a Markov chain, and if the Markov automaton is
chosen such that Ppi ¨A1 “ jq “ Pi,j for all i, j P S, then its transition matrix is P .

3.1.2. Coupling From The Past
The algorithm described here is based on the following intuition: a Markov chain that has been running

“infinitely long” is now distributed according to its stationary distribution π. Starting this Markov chain
arbitrarily far back in time and determining its state at time 0 gives a sample distributed according to π. The
proof underlying this method can be found in [42].

The objective is to determine this final state using only a finite amount of information. The key idea is to
consider only the last k1 steps of the Markov chain, generated by the sequence of events A´pk1´1q, . . . , A0 „ ρbk1 .
As we have no means of determining the value of X´k1 , we take into account all possibilities, i.e. we compute
X0 for all possible starting states at time ´k1. This gives us a set of plausible end states

S0 “ ts ¨A´pk1´1q ¨ . . . ¨A0, s P Su.

If S0 is a singleton, then regardless of X´k1 , X0 is the unique element of S0, which is therefore distributed
according to π. Otherwise, it simply means we have not considered a large enough portion of the past; we
therefore take a k2 ą k1, generate new events A´pk2´1q, . . . , A´k1 „ ρbk2´k1 independently from the previous
ones, and compute S2 “ ts ¨ A´pk2´1q ¨ . . . ¨ A0, s P Su. By reiterating for increasing values of ki until Si is a
singleton, we have an algorithm which returns a state distributed according to π.

Algorithm 1: Coupling From The Past [42]
Data: S, A, ρ et ¨

1 begin
2 iÐ 0;
3 AÐ pq;
4 S Ð S;
5 while |S| ą 1 do
6 iÐ i` 1;
7 prefix „ ρbki ;
8 AÐ concatenate(prefix, A);
9 S Ð S ¨A // Possibly computed using only prefix and S

10 return S

−1−2−8 −4−n/2−n 0

Figure 3.9. Successive iterations for Algorithm 1.

The exact choice of the pkiqiPN does not change the distribution of the output, but can impact complexity.
When taking ki “ i deterministically, for example, one can maintain a unique vector s in memory, updating
it at each iteration by setting si`1pxq “ sipx ¨ A´iq. We then have that Si “ tsipxq|x P Su, i.e. the algorithm
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terminates when all the entries in s are equal. In the case of monotonicity (described below), it is no longer
possible to work with this unique vector: the entire trajectories must be computed once more. Doubling the
value of k between successive iterations, however, greatly reduces the execution time of the algorithm [42].

Furthermore, call τ the first ki such that Si is a singleton; regardless of the choice of pkiqiPN, so long as
one can construct a finite sequence A1, . . . , Al with positive probability such that ts ¨ A1 ¨ . . . ¨ Al, s P Su is a
singleton, then τ has finite expectation, i.e. the algorithm 1 terminates in finite expected time. For bounds on
this running time, see [42].

3.1.3. Reducing complexity through envelopes
The above algorithm can be refined in many ways, such as that described in [51], which does not require

storing the pA´nqnPN. In general, sampling techniques based on Markov chains, often referred to as Monte
Carlo methods, are used when sampling from a large, multi-dimensional set S for which computing the exact
distribution is not an option. Coupling From The Past is interesting in that it generates unbiased samples, but
in its raw form, its complexity is linear in the size of S. Techniques have therefore been introduced to overcome
this limitation, the most common of which use some form of envelope.

Informally, an envelope E implicitly or explicitly defines a subset of S, comprising the states it encompasses.
The idea is to define a low-dimension set of envelopes which allow us to keep track of the evolution of our Markov
chains at a reduced cost: the transition function ¨ is generalized in order to apply to these envelopes, after which
we run the simulation over the envelopes (Si becomes S1i “ S10 ¨A´pki´1q ¨ . . . ¨A0, where S10 encompasses all of
S). The algorithm now terminates when S1i comprises only one state.

Many envelope-based strategies exist [22, 30, 33, 40]. The most common examples rely on an ordering of the
set space; this is the case for both the monotonous [42] and non-monotonous [8] examples described below.

3.1.4. Monotonous chains
Suppose that one can define a partial order ĺ over S such that there exists an upper bound smax and a lower

bound smin for ĺ, and such that the following holds:

@i, j P S,@A P A, si ĺ sj ùñ si ¨A ĺ sj ¨A.

Such a chain is said to be monotonous for ĺ.
Consider the set of intervals tpm,Mq,m ĺ Mu, where rm,M s “ ts P S | m ĺ s ĺ Mu. Taking S10 “

psmin, smaxq and pm,Mq ¨ A “ pm ¨ A,M ¨ Aq, one can verify that, for all i P N, S1i contains all the states in
Si [42]. A direct consequence of this is that, if ever S1i “ pmi,Miq is such that mi “Mi, then Si is a singleton,
and its unique element, mi, is distributed according to π.

3.1.5. Non-monotonous chains
Suppose now that the state space is still partially ordered, but that the dynamic is no longer monotonous. We

still use envelopes of the form pm,Mq, with m0 “ smin and M0 “ smax, but the generalization of the transition
function is altered:

pm,Mq ¨A
(def.)
“

ˆ

inf
mĺsĺM

s ¨A, sup
mĺsĺM

s ¨A

˙

.

Like before, if this dynamic over the envelopes leads to a point where mi “Mi, then mi is distributed according
to the stationary distribution π [8].

Notice that with this technique, pmiq and pMiq are not trajectories of the initial dynamic. Furthermore, one
must verify that the algorithm converges; the fact that there exists a sequence A1, . . . , Al such that ts ¨A1 ¨ . . . ¨
Al, s P Su is a singleton does not imply that there exists a sequence A11, . . . , A1k such that psmin, smaxq¨A

1
1¨. . .¨A

1
k “

ps, sq for some s P S.
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Figure 3.10. Monotonous chain. Figure 3.11. Non monotonous chain.

3.2. Coupling from the past of closed queuing networks
3.2.1. Closed queuing networks model

Consider a closed queuing network of K queues andM customers in total. Each queue k has a finite capacity
Ck ďM and a single server with independent exponential services of rate µk. After a customer has been served
in queue i, it is routed to queue j with probability pi,j , independently of the current state and past evolution
of the network. If queue j is full, then the customer remains in queue i and waits to be served again (a new
destination will then be drawn, independently from the previous one). A configuration is represented by a
vector x P S where xi represents the number of customers in queue i. The state space S being defined as

S “

#

x “ px1, x2, . . . , xKq P NK
ˇ

ˇ

ˇ

ˇ

ˇ

K
ÿ

k“1
xk “M and 0 ď xk ď Ck,@k

+

.

If all queues have an infinite capacity (i.e. if for each k P t1, . . . ,Ku, Ck “M) then |S| “
`

K`M´1
K´1

˘

. Thus for
M " K the complexity of the state space is OpMKq.

The dynamics of the system defines a Markov chain pXnqnPN, represented by the Markov automaton composed
of the event space tti,j |1 ď i, j ď Ku, the distribution ρ such that ρpti,jq “ µipi,j

řK
k“1 µk

, and the transition function
ti,j which describe routing from queue i to queue j is defined by

x ¨ ti,j “ x` 1xią0,xjăCj pej ´ eiq.

The aim is to sample the stationary distribution with perfect sampling techniques. The chain is non-
monotonous and the cardinality of the state space is OpMKq, however Bouillard et al. [4] developed a new
envelope-based strategy to improve the perfect sampling algorithm for this model. The idea is to exploit the
constraint of the total number of customers in the network to represent any set of states as a directed graph,
called diagram.

3.2.2. Set of states as a diagram
In a diagram, a state is encoded by a path of length K starting at node p0, 0q and ending at node pK,Mq,

such that the arc ppk´ 1,mq, pk,m1qq belongs to the path if and only if there are m1 ´m customers in queue k.
A given diagram envelopes all configurations for which the encoding is present. A diagram is said to be complete
if it encodes the state space S. A complete diagram contains at most OpKM2q arcs. In Figures 3.12 and 3.13,
we illustrate the encoding of the configuration p0, 0, 2, 0, 1q, as well as the complete diagram for a network with
K “ 5 queues, M “ 3 customers and a capacity vector C “ p2, 1, 3, 1, 2q.

3.2.3. Transition in a diagram
The transition induced by event ti,j is applied directly on the diagram D. To compute this transition, we

need to know what paths of D will remain unchanged, either because the number of customers in queue i is
equal to 0 (set of arcs Stay), or because queue j is full (set of arcs Full). From there, we deduce which arcs
will be modified (set of arcs T ransit). In accordance with ti,j , these arcs are modified as follows:

‚ In column i, the slopes of the arcs are decreased by one.
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Figure 3.12. Encoding of p0, 0, 2, 0, 1q.
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Figure 3.13. Complete diagram.

‚ In columns k P tminpi, jq ` 1, . . . ,maxpi, jq ´ 1u, the arcs are shifted up or down, depending whether
i ă j or i ą j.

‚ In column j, the slopes of the arcs are increased by one.
Figure 3.14 shows how the diagram D is modified by event t4,2. First, the sets Stay, Full and T ransit are
determined according the values of arcs in columns 4 and 2. As an example, arcs in Stay are along paths such
that arcs in column 4 represent 0 customers. Afterward, arcs in T ransit are updated in accordance with t4,2,
that corresponds to the set T ransit1. Finally, T4,2pDq is the diagram that contains arcs in StayYFullYT ransit1.

Each transition has complexity OpKM2q, that corresponds to the number of arcs in a diagram.

2 43
4 2

Stay Full

Transit Transit'

2 43 2 43
D

-1+1
T4,2,1(D)

Figure 3.14. Transition induced by event t4,2.

3.2.4. Perfect simulation
To use diagrams with Coupling From the Past algorithm (Algorithm 1), we start by replacing the set S with

the complete diagram, and apply the transitions ti,j on this diagram. The algorithm terminates when the final
diagram contains only one path. This path corresponds to a state. Bouillard et al. [4] proved that there exists
a finite sequence of events pti1,j1 , . . . , tiN ,jN

q that reduces the complete diagram into a diagram that contains
only one path, thereby proving the following theorem:
Theorem 3.1. The coupling from the past algorithm using diagrams terminates in finite expected time and
produces an exact sample from the stationary distribution.

3.3. Accelerating Coupling From The Past
3.3.1. The hard-core gas model

For a simple graph G “ pV,Eq, define an independent set as a subset I of V , such that no two vertices of I
are connected by an edge in E. Denote I the set of independent sets.

The hard-core gas model, originating from statistical physics [20], looks at the feasible configurations for
a gas. In this model, particles occupy sites, represented by vertices, and incompatible sites are connected by



ESAIM: PROCEEDINGS AND SURVEYS 221

an edge. A configuration is considered feasible if no two incompatible sites are occupied, i.e. if it forms an
independent set. The likelihood of each configuration is of the form

πpIq “
λ|I|

Zλ
.

The positive parameter λ is called the fugacity of the system, and Zλ is a normalizing constant.
We are interested in generating random samples according to the distribution π. This cannot be done in

a straightforward fashion, as that would require computing Zλ, which is 7P -completea. We therefore rely of
Monte Carlo methods, and namely on Coupling From the Past.

A simple dynamic for defining a Markov chain with stationary distribution π is the following: let A “

V ˆt`,´u be the set of events, and ρ be the distribution over A such that ρpu`q “ 1
|V |

λ
1`λ and ρpu´q “ 1

|V |
1

1`λ
(u is a vertex chosen uniformly at random, after which we pick ` or ´ independently with respective probabilities
λ

1`λ and 1
1`λ ). Consider the transition function ¨ defined by

I ¨ u´ “ Iztuu

and

I ¨ u` “

#

I Y tuu if I Y tuu P I,
I otherwise.

The resulting Markov automaton defines a Markov chain whose stationary distribution is π. An enhanced
variant of this dynamic can be found in [30].

For coupling from the past, we build an envelope based upon the partial ordering induced by inclusion [30]: we
maintain two setsm,M Ď V such that, regardless of the initial state of a trajectoryX, we havemi Ď Xi ĎMi at
each time step i. Note that m and M need not be independent sets themselves; indeed, to envelope trajectories
emanating from all states, it is necessary to take m0 “ ∅ and M0 “ V . The transitions are then applied to the
envelope as followed:

pm,Mq ¨ u´ “ pmztuu,M ¨ ztuuq

and

pm,Mq ¨ a` “

$

’

&

’

%

pmY tuu,M Y tuuq if M Y tuu P I,
pm,M Y tuuq if mY tuu P I,
pm,Mq otherwise.

This envelope can be used to run the Coupling From the Past algorithm for the hard-core gas model. Bounds
on its complexity can be found in [30].

3.3.2. Event skipping
The overall Monte Carlo scheme for the hard-core gas model suffers from an inherent weakness: it can easily

be verified that the probability of having I ¨ a “ I for a „ ρ is at least 1
2 , and can be arbitrarily close to 1

for eccentric values of λ (either very large or very small with respect to 1). For typical Monte Carlo, this is
not necessarily an issue, as one can sample a conditioned to having I ¨ a ‰ I. However, one must pay special
attention to the time at which the simulation is stopped, in order to make sure that the output is not biased.
Since the conditional distribution of a could be obtained through rejection sampling (though this method would
not reduce the complexity, since “skipped” events are still sampled), a simple coupling argument suffices to show
that the number of omitted transitions one should account for at each step of the algorithm is geometrically
distributed. Counting these transitions allows one to stop the algorithm in such a way as to obtain an unbiased
output.

For Coupling From the Past, this strategy can be adapted, but requires even more care. Indeed, this simple
conditioning cannot be applied, as a given event A´i does not always apply to the same state: it is first applied

a7P is the complexity class of counting problems associated to decision problems in NP.
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to pm0,M0q ¨ A´pk0´1q ¨ . . . ¨ A´pi`1q, but then as we start the simulation from further back, it is also applied
to pm0,M0q ¨ A´pk1´1q ¨ . . . ¨ A´pi`1q, and so on (cf. Figure 3.15). The sequence of events cannot simply be
re-sampled independently from the preceding ones every time we re-run the simulation from further back in
time; it is therefore necessary to introduce an update scheme for the sequence of events. This scheme must
both remove events which do not modify the “current” state of the envelope, and insert new events according
to a precise distribution, so as to compensate any bias that might result from removals in previous states. Note
that we cannot simply keep track of which events have been removed: this presents the same caveat as rejection
sampling, where the overall complexity is unchanged, since all the events are still sampled. The exact details
of this scheme, as well as the proof of its correctness, can be found in [47].

S

0´k0´k1´k2

I ¨A
‰
I

I
¨A
“
I

I ¨A ‰ I

A

Notice that A modifies I for the first and third runs, but not for the second one. Removing A from the sequence of
events during the second run requires compensating for this removal during the third run.

Figure 3.15. Events applied to different states
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