
Ergodicity of the hard-core PCA
with a random walk method

Jérôme Casse1, Irène Marcovici2, and Maxence Poutrel2

1 Université Paris-Saclay, CNRS,
Laboratoire de mathématiques d’Orsay, 91405 Orsay, France

jerome.casse@universite-paris-saclay.fr
2 Univ Rouen Normandie, CNRS, Normandie Univ,

LMRS UMR 6085, F-76000 Rouen, France
{irene.marcovici,maxence.poutrel1}@univ-rouen.fr

Abstract. The hard-core probabilistic cellular automaton has attracted
a renewed interest in the last few years, thanks to its connection with the
study of a combinatorial game on percolation configurations. We provide
an alternative proof for the ergodicity of this PCA for a neighbourhood
of size 2 and 3, using the notion of decorrelated islands introduced by
Casse in 2023, together with some new ideas. This shortens the previous
proofs and provides a more intuitive and unified approach.
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1 Percolation games and PCA

Percolation games. Let us present the following percolation game on Z2, as in
Ref. [5]. Consider two non-negative reals ϵ0, ϵ1 ∈ [0, 1] such that 0 ≤ ϵ0 + ϵ1 ≤ 1.
For each site of Z2 we assign independently one of the 3 following states:

• trap with probability ϵ1;
• target with probability ϵ0;
• open with probability r = 1− ϵ0 − ϵ1.

This defines the random board on which two players compete. Fix an integer
n ≥ 2. The rule of the game is the following. At time 0, a token is placed at the
starting position (0, 0), and then, the two players move it alternatively, from its
current position (i, j) on the board to a site in the set Out(i, j) = {(i+k, j+1) :
k ∈ {0, 1, . . . , n − 1}}, see Figure 1. If the current player moves the token to
a trap, that player loses the game immediately; if it moves it to a target, that
player wins the game immediately; otherwise (i.e. if the destination site is open),
the game continues with the other player’s turn.

We can then ask the following question: with the best strategy for each player,
what is the probability that the game never ends, so that there is a draw? The
answer is 0 for the cases n = 2 [5] and n = 3 [1] when 0 < ϵ0 + ϵ1 ≤ 1. In this
article, we give alternative proofs of these two results, using ideas developed by
Casse [3]. For n ≥ 4, the question remains open.
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Fig. 1: The possible moves in the percolation game, for n = 2 on the left, and
n = 3 on the right

Associated PCA. To study the percolation game, we can associate to each site
the outcome (win, lose or draw) of the current player (the one who moves out the
token from this site) when both players play perfectly. If we know the outcomes
of the sites of the set Out(i, j), it allows to find out the outcome of site (i, j). This
leads to the introduction of a probabilistic cellular automaton (PCA) having a
neighborhood of size n, with three states: 0 for the win, 1 for the lose and ? for
the draw. Note that a trap can be interpreted as a win site, since if a player
moves the token to a trap, the next player (the one who should have moved the
token out from the trap site) wins; while a target can be interpreted as a lose
site.

This PCA, denoted H̃n later in this article, defines a Markov chain (Xi(t) :
i ∈ Z)t≥0 on {0, 1,?}Z, whose transition probabilities satisfy:

P (Xi(t+ 1) = a | ∀k ∈ {0, . . . , n− 1}, Xi+k(t) = 0) =


ϵ0 if a = 0;

1− ϵ0 if a = 1;

0 if a = ?.

P (Xi(t+ 1) = a | ∃k ∈ {0, . . . , n− 1}, Xi+k(t) = 1) =


1− ϵ1 if a = 0;

ϵ1 if a = 1;

0 if a = ?.

P (Xi(t+ 1) = a | (Xi(t), . . . , Xi+n−1(t)) ∈ {0,?}n \ {(0, . . . , 0)}) =


ϵ0 if a = 0;

ϵ1 if a = 1;

r if a = ?.

These transitions are illustrated on Figure 2 for n = 2.
A PCA is ergodic if there is a unique probability measure µ∞ such that

the Markov chain Z(t) of the PCA verifies: for any µ0 ∈ {0, 1}Z such that the
initial configuration Z(0) is µ0, the law of Z(t) weakly converges to µ∞. Here,
the ergodicity of H̃n means that the status of site (0, 0) does not depend on
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Fig. 2: Transition probability of the PCA H̃2.

the assignment of traps and targets that are sufficiently far away on the board.
Observe that if for all i ∈ Z, Xi(0) ∈ {0, 1}, then for all i ∈ Z, t ≥ 0, Xi(t) ̸= ?.
In particular, if the PCA H̃n is ergodic, then its unique invariant measure does
not contain the state ?, meaning that the probability of draw is null.

Theorem 1. For n ∈ {2, 3} and (ϵ0, ϵ1) ∈ [0, 1
2 ]

2 \ {(0, 0)}, the PCA H̃n is
ergodic, and so there is almost surely no draw in the percolation game.

The result above was first proved for n = 2 using weight functions [5]. The
method was then adapted for n = 3, with highly intricate computations [1].
The aim of the present article is to provide another shorter proof, based on the
method of decorrelated islands [3].

Note that the PCA H̃n can be seen as the envelope PCA of the hard-core
PCA Hn. By definition, it is the binary PCA whose associated Markov chain
X(t) = (Xi(t) : i ∈ Z) ∈ {0, 1}Z satisfies:

P (Xi(t+ 1) = a | ∀k ∈ {0, . . . , n− 1}Xi+k(t) = 0) =

{
ϵ0 if a = 0;

1− ϵ0 if a = 1.

P (Xi(t+ 1) = a | ∃k ∈ {0, . . . , n− 1}Xi+k(t) = 1) =

{
1− ϵ1 if a = 0;

ϵ1 if a = 1.

The transitions are illustrated on Figure 3 for n = 3. The PCA Hn corresponds to
the restriction of H̃n to configurations that do not contain the state ?. Envelope
PCA are a practical tool to prove the ergodicity of PCA in the high noise regime,
using the fact that the ergodicity of the envelope PCA implies the ergodicity of
the associated PCA [2].

Finally, let us also mention that Hn can be seen as a CA with double errors: it
is a PCA obtained from a deterministic CA, on which we add an error depending
on the expected state (ϵ0 if we expect a 1 and ϵ1 if we expect a 0).
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Fig. 3: Transition probability of the hard-core PCA H3, where dots mean that
there can be either a 0 or a 1

Ergodicity of PCA. The ergodicity of PCA has been studied using various meth-
ods (coupling, entropy, Fourier analysis, weight functions . . . ) and still raises
many questions, see [8,6,7] and the references therein. The hard-core PCA has
attracted particular interest, since in addition to its connection to percolation
games, it has long been known for its connection with statistical physics and
with the enumeration of directed animals. For ϵ1 = 0, Hn has a Markovian in-
variant measure and its ergodicity is easier to prove [5], but for other values of
the parameters, no general method is known.

Outline of the article. In Section 2, we present the sketch of our proof of Theo-
rem 1. In Section 2.1, we recall the notion of decorrelated islands introduced by
Casse [3], then in Section 2.2, we explain the new idea that allows to handle the
case of the hard-core PCA. In Section 3, we prove Theorem 1 for n = 2. This
requires some computations that we present in details. In Section 4, we prove
Theorem 1 when n = 3, using the same method.

2 Sketch of the proof

2.1 Decorrelated islands method

Let us consider the evolution of the PCA H̃n, from the initial configuration ?Z.

• With probability (ϵ0+ϵ1)
k, the k consecutive cells of indices in 0, . . . , k−1 go

from state ? to state 0 or 1, i.e. for all i ∈ {0, . . . , k− 1}, Xi(1) ∈ {0, 1}. We
call such a sequence of consecutive cells a decorrelated island, as the states
of these cells do not depend on the initial configuration.

• Our goal is to study the evolution of the size of a decorrelated island, that
is a (maximal) set of consecutive cells where the symbol ? does not appear.
With probability 1, there exists a time t0 ≥ 0 when such a decorrelated
island is created. For t ≥ t0, we denote by it and jt the positions of the left
and right boundary of the decorrelated island, respectively. So, cells between
it and jt are in state 0 or 1, while it − 1 and jt + 1 are in state ?.
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• If jt − it →t→∞ ∞ with positive probability, this means that the island
grows, so that the symbols ? progressively disappear, implying that the
PCA is ergodic.

To study the behaviour of the left boundary it, we only remember the states
of the first m cells of the island, given by ft = (Xit , X1+it , . . . , Xm−1+it), with
a well-chosen value of m, selected according to the size of the neighborhood n.
We proceed in a similar way for the right boundary jt. In the following, we will
set m = 2 when n = 2, and m = 4 when n = 3.

This method, applied with m = 1, gives a sufficient ergodicity criterion for
PCA with binary alphabet and two-size neighborhood [3]. This allows to handle
the case of 12 out of 16 deterministic cellular automata with error ϵ > 0. By
taking m = 2, it also gives a new proof of the ergodicity of the PCA H̃2 (and so
of H2) when ϵ0 = ϵ1 > 0.

2.2 The main improvement of the method

In this article, we improve the method developed by Casse [3] to give a new and
shorter proof of Theorem 1. The improvement consists in considering one or two
time steps at once, according to the value of the states of the boundary, and not
just one time step in every situation.

First, observe that in order to prove that P (jt − it → ∞) is positive, since
the size of negative steps is bounded (by 1), it is enough to show that the mean
asymptotic drift

D = lim
t→∞

E [Jt]− lim
t→∞

E [It]

of (jt− it)t≥t0 is positive, where Jt is the increment of (jt), i.e. Jt = jt+1−jt and
It the one of (it). The following remark in fact allows one to restrict ourselves
to the study of the right boundary.

Remark 1. Let us denote by R = limt→∞ E [Jt] the mean asymptotic drift of the
right boundary. Using the symmetry of the transition rule of H̃n with respect to
the left-right symmetry, while taking into account the fact that the neighborhood
is not centered, it follows that D = 2R + (n − 1). Consequently, in the rest of
the article, we focus only on the behaviour of the right boundary.

The innovation of the present work is to study the law of Jt and the one
of Jt + Jt+1 according to the values of the states of the boundary ft. This is
summed up in the following lemma.

Lemma 1. Consider a homogeneous Markov chain (jt, ft) on Z × F , where F
is a finite set, and assume that the increment Jt = jt+1 − jt depends only on ft.
Precisely, assume that for any f ∈ F , for any k ∈ Z, and for any t ≥ 0,

E [Jt|ft = f, jt = k] = E [j1|f0 = f, j0 = 0] .

Then, if the limit R = limt→∞ E [Jt] exists and is finite, it satisfies:

R ≥ min
f∈F

max

(
E [Jt|ft = f ] ,

1

2
E [Jt + Jt+1|ft = f ]

)
. (1)



6 Casse, Marcovici, Poutrel

Proof. First, we split the set F into two disjoint parts:

F1 =

{
f ∈ F : E [J0|f0 = f ] ≥ 1

2
E [J0 + J1|f0 = f ]

}
and F2 = F\F1.

The set F1 represents the states for which the mean increment is larger when we
consider a single time step compared to two time steps, and F2 those for which
it is the reverse.

We now define another Markov chain (ĵt, f̂t, wt)t≥0 as follows:

• (ĵ0, f̂0, w0) = (j0, f0,1f0∈F2
),

• if wt = 0, then ĵt+1 = jt+1, f̂t+1 = ft+1 and wt+1 = 1ft+1∈F2
,

• if wt = 1, then ĵt+1 = jt, f̂t+1 = ft and wt+1 = 0.

As a consequence:

Ĵt = ĵt+1 − ĵt = Jt when wt = 0 and ft ∈ F1;

Ĵt = 0 when wt = 1 and ft ∈ F2;

Ĵt = Jt−1 + Jt when wt = 0 and ft ∈ F2.

So, compared to (jt, ft)t≥0, the new Markov chain moves one step forward when
f̂t is in F1, while when it is in F2, the state does not change at the first time step
(when wt = 1) and then moves of the equivalent of two steps at a time (when
wt = 0). The variable wt can thus be thought as a waiting time.

Let us now consider the value R̂ = limt→∞ E
[
Ĵt

]
. We show that R̂ ≥ M ,

where M is the term on the right-hand side of (1). We have

R̂ =
∑
f∈F1

τ(f, 0)E
[
Ĵt|f̂t = f, wt = 0

]
+
∑
f∈F2

(
τ(f, 1)× 0 + τ(f, 0)E

[
Ĵt|f̂t = f, wt = 0

])

where τ is the invariant measure of the Markov chain (f̂t, wt)t≥0, which exists
since F is finite.

By definition of (ĵt, f̂t, wt)t≥0, we have for any f ∈ F1,

E
[
Ĵt|f̂t = f, wt = 0

]
= max

(
E [Jt|ft = f ] ,

1

2
E [Jt + Jt+1|ft = f ]

)
≥ M

and for any f ∈ F2,

E
[
Ĵt|f̂t = f, wt = 0

]
= 2max

(
E [Jt|ft = f ] ,

1

2
E [Jt + Jt+1|ft = f ]

)
≥ 2M.

By construction of the new Markov chain, for any f ∈ F2, τ(f, 0) = τ(f, 1). So
we obtain R̂ ≥ M

∑
(f,w)∈(F1×{0})∪(F2×{0,1}) τ(f, w) = M .
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To conclude, we only need to prove that R = R̂. We recall that the equality
(jt, ft) = (ĵt, f̂t) holds at least once in two, and by the ergodic theorem,

R̂ = lim
t→∞

E
[
Ĵt

]
= lim

t→∞

E
[
ĵt − j0

]
t

and R = lim
t→∞

E [Jt] = lim
t→∞

E [jt − j0]

t
.

So, we have R̂ = R. ⊓⊔

Using Remark 1 together with Lemma 1, we can then prove Theorem 1 by just
showing that, for any n ∈ {2, 3} and for every t ≥ t0,

R ≥ min
f∈{0,1}m

(
max

(
E [Jt|ft = f ] ,

1

2
E [Jt + Jt+1|ft = f ]

))
> −n− 1

2
. (2)

Remark 2. We will actually prove the previous inequality not for (jt) but for
some modification (j̃t), introduced in Sections 3.1 for n = 2 and in 4.1 for n = 3.

3 Proof of Theorem 1 when n = 2

3.1 Modified boundary and star state

To give a formal proof of Theorem 1, we now introduce two additional notions.
First, as mentioned in Remark 2, we define a slight modification of the posi-

tion jt, that depends on the states of the boundaries. To do so, let us consider
a decorrelated island (Xit , . . . , Xjt) not reduced to a singleton at time t. To
study the behaviour of its right boundary, we introduce the modified position j̃t
defined by

j̃t =


jt if (X−1+jt , Xjt) ∈ {(0, 1), (1, 1)};
jt − 1

2 if (X−1+jt , Xjt) = (0, 0);

jt − 1 if (X−1+jt , Xjt) = (1, 0).

As a result of this technical change, if ϵ0 = ϵ1 = 0 (error-free regime), then the
deterministic drift satisfies J̃t = −1/2 for any t, whereas Jt oscillates between
0 and −1. The purpose of this modification is therefore only to simplify the
analysis. Note that the cells we will consider at time t in the right boundary
will still be given by ft = (X−1+jt , Xjt). The modification ĩt of it is defined
analogously, using the left-right symmetry of the transition rule.

Second, we introduce a star state, that we denote by ∗. This state will be used
to encode the state of a cell of the decorrelated island whose exact value (0 or 1)
is not remembered. Indeed, if we retain all the information about the island, the
computation is too complex. The state ∗ will thus enable us to establish some
bounds for the behaviour of the boundaries. This is different from the state ?,
which represents a cell whose value is completely unknown.
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3.2 Transition probabilities

In this section, we study the behaviour of the Markov chain (j̃t, ft) where we
recall that ft = (X−1+jt , Xjt). Our goal is to prove that

E
[
J̃t|ft ∈ {(0, 1), (1, 0), (1, 1)}

]
> −1

2
and E

[
J̃t + J̃t+1|ft = (0, 0)

]
> −1, (3)

which implies Equation (2) when n = 2, and so Theorem 1 for n = 2.
In the following, we assume that jt − it ≥ 5. It is not a loss of generality to

achieve the result, and it allows to avoid any problem of dependency between
(̃it+1, (Xit+1

, X1+it+1
)) and (j̃t+1, (X−1+jt+1

, Xjt+1
)).

Case ft ∈ {(0, 1), (1, 0), (1, 1)}: For these three types of right boundaries,
the transition probabilities are the same, as illustrated on Figure 4.

More precisely, if j̃t = j̃ and if ft = f belongs to {(0, 1), (1, 0), (1, 1)}, then

(j̃t+1, ft+1) =



(j̃ − 1, (1, 0)) w.p. ϵ1(1− ϵ1)r

(j̃ − 1
2 , (0, 0)) w.p. (1− ϵ1)

2r

(j̃, (0, 1)) w.p. (1− ϵ1)ϵ1r

(j̃, (1, 1)) w.p. ϵ21r
(j̃, (1, 0)) w.p. ϵ1ϵ0r
(j̃ + 1

2 , (0, 0)) w.p. (1− ϵ1)ϵ0r

(j̃ + 1, (0, 1)) w.p. (1− ϵ1)ϵ1r

(j̃ + 1, (1, 1)) w.p. ϵ21r
(j̃ + k + 1, (1, 0)) w.p. (ϵ0 + ϵ1)

kϵ1ϵ0r for k ≥ 0

(j̃ + k + 3
2 , (0, 0)) w.p. (ϵ0 + ϵ1)

kϵ20r for k ≥ 0

(j̃ + k + 2, (0, 1)) w.p. (ϵ0 + ϵ1)
kϵ0ϵ1r for k ≥ 0

(j̃ + k + 2, (1, 1)) w.p. (ϵ0 + ϵ1)
kϵ21r for k ≥ 0

(4)

Using Equation (4), we can compute the mean increment in one time step
for this type of boundary:

E
[
J̃t|ft = {(0, 1), (1, 0), (1, 1)}

]
= −ϵ1(1− ϵ1)r −

1

2
(1− ϵ1)

2r +
1

2
ϵ0(1− ϵ1)r + · · ·+

∞∑
k=0

(k + 2)ϵ21(1− r)kr

= −1

2
r + ϵ1r +

1

2
ϵ0(1− ϵ1)r +

1

2
ϵ21r +

1

2
ϵ20 + ϵ0ϵ1 + ϵ21 +

(1− r)2

r

= −1

2
+

1

2
ϵ0 +

1

2
ϵ1 + ϵ1r +

1

2
ϵ0(1− ϵ1)r +

1

2
ϵ21r +

1

2
(1− r)2 +

1

2
ϵ21 +

(1− r)2

r︸ ︷︷ ︸
>0

.

(5)

This can be checked by hand or with the help of a computer algebra system.
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1− ϵ1

1

ϵ1

0

1− ϵ1

1

ϵ1

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

j̃

∗ 1 1 ? ? ?

∗ 0 1 ? ? ?
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Fig. 4: Transition probabilities of the different cells when the state f of the
boundary belongs to {(0, 1), (1, 0), (1, 1)}. The first three lines correspond to
the three cases f = (1, 0), f = (0, 1) and f = (1, 1). The boundary position j
depends on the case, but the modified boundary j̃ is always the same. The boxes
provide the different possible states of the cells with their respective probability.

Case ft = (0, 0): For this type of boundary, we look at the increment in two
time steps. The first step is given on Figure 5.

First step: As illustrated on Figure 5, if j̃t = j̃ and if the state of the boundary
satisfies ft = (0, 0), then

(j̃t+1, ft+1) =



(
≥ j̃ − 3

2 , (∗, 0)
)

w.p. ϵ0r2

(j̃ − 3
2 , (1, 0)) w.p. ϵ1ϵ0r

(j̃ − 1, (0, 0)) w.p. ϵ20r
(j̃ − 1

2 , (0, 1)) w.p. ϵ0(1− ϵ0)r

(j̃ − 1
2 , (1, 1)) w.p. ϵ1(1− ϵ0)r

(j̃ − 1
2 , (∗, 1)) w.p. r(1− ϵ0)r

(j̃ − 1
2 , (1, 0)) w.p. (1− ϵ0)ϵ0r

(j̃, (0, 0)) w.p. ϵ20r
(j̃ + 1

2 , (0, 1)) w.p. ϵ0ϵ1r
(j̃ + 1

2 , (1, 1)) w.p. (1− ϵ0)ϵ1r

(j̃ + k + 1
2 , (1, 0)) w.p. (ϵ0 + ϵ1)

kϵ1ϵ0r

(j̃ + k + 1, (0, 0)) w.p. (ϵ0 + ϵ1)
kϵ20r

(j̃ + k + 3
2 , (0, 1)) w.p. (ϵ0 + ϵ1)

kϵ0ϵ1r

(j̃ + k + 3
2 , (1, 1)) w.p. (ϵ0 + ϵ1)

kϵ21r

(6)
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?
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0

ϵ0

1

ϵ1

?

r

j̃

∗ ∗ 0 0 ? ?

Fig. 5: Transition probabilities when the boundary is in state (0, 0) and j̃ indi-
cates the position of the boundary with the modification considered.

Remark 3. In the first case, which corresponds to a transition to ft+1 = (∗, 0),
the value of j̃t+1 can be equal to j̃ − 3/2 if the boundary is in state (1, 0) or to
j̃ − 1 if it is in state (0, 0). As we want to bound by below the increment, we
keep the lower bound j̃ − 3/2 in that case.

Second step: As the second step depends only on the first step through the value
of ft+1, the transitions given in Equation (6) allow to deduce the mean increment
for two time steps,

E
[
J̃t + J̃t+1|ft = (0, 0)

]
= E

[
J̃t|ft = (0, 0)

]
+ P (ft+1 = (∗, 0)|ft = (0, 0))E

[
J̃t+1|ft+1 = (∗, 0)

]
+ P (ft+1 = (0, 0)|ft = (0, 0))E

[
J̃t+1|ft+1 = (0, 0)

]
+ P (ft+1 ∈ {(0, 1), (1, 0), (1, 1), (∗, 1)}|ft = (0, 0))E

[
J̃t+1|ft+1 = (0, 1)

]
. (7)

The probability transitions of ft+1 are given by Equation (6):

P (ft+1 = (∗, 0)|ft = (0, 0)) = ϵ0r
2,

P (ft+1 = (0, 0)|ft = (0, 0)) = 2ϵ20r +

∞∑
k=0

ϵ20(1− r)kr = 2ϵ20r + ϵ20, and, so,

P (ft+1 ∈ {(0, 1), (1, 0), (1, 1), (∗, 1)}|ft = (0, 0)) = 1− ϵ0r
2 − 2ϵ20r − ϵ20.

Moreover, by Equation (6), the mean increment in one time step when the bound-
ary is in state (0, 0) verify

E
[
J̃t|ft = (0, 0)

]
≥ −1

2
r2 − 2ϵ0r + ϵ20r +

1

2
ϵ21 +

(1− r)2

r
(8)
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and, when it is in state (∗, 0) we have the following lower bound:

E
[
J̃t|ft = (∗, 0)

]
≥ min

(
E
[
J̃t|ft = (0, 0)

]
,E
[
J̃t|ft = (1, 0)

])
≥ −1

2
r2 − 2ϵ0r + ϵ20r +

1

2
ϵ21 +

(1− r)2

r
. (9)

Indeed,

E
[
J̃t|ft = (1, 0)

]
−
(
−1

2
r2 − 2ϵ0r + ϵ20r +

1

2
ϵ21 +

(1− r)2

r

)
=

1

2
(1− r)2 +

1

2
ϵ1r +

1

2
ϵ21r +

1

2
ϵ0(1− ϵ1)r + ϵ0

(
3

2
− ϵ0

)
r ≥ 0. (10)

Hence, as detailed in Appendix 6.1, we finally obtain that

E
[
J̃t + J̃t+1|ft = (0, 0)

]
> −1. (11)

Equations (5) and (11) imply Equation (2) when n = 2, and so Theorem 1 for
n = 2.

4 Proof of Theorem 1 when n = 3

In this Section, we consider the PCA H̃3. The proof follows the same way as for
H̃2. The main difference is that we now consider a boundary ft of size 4. Also,
the definition of the modified boundary j̃t is slightly different.

4.1 Modified boundary

Let us consider a decorrelated island (Xit , . . . , Xjt). We now define the modified
boundary position j̃t by

j̃t =


jt if Xjt = 1,

jt − 1 if (Xjt−2, Xjt−1, Xjt) = (0, 0, 0) or (Xjt−1, Xjt) = (1, 0),

jt − 2 else, i.e. if (Xjt−2, Xjt−1, Xjt) = (1, 0, 0).

4.2 Transition probabilities

For n = 3, we consider a right boundary made of the states of the 4 rightmost
cells of the island, ft = (X−3+jt , X−2+jt , X−1+jt , Xjt), and in the following,
we assume that jt − it ≥ 9. It is not a loss of generality to achieve the result,
and it allows to avoid any problem of dependency between (j̃t+1, ft) and its left
counterpart.

We group the possibles states of the boundary into three subsets of configu-
rations (two being reduced to a singleton): {(0, 0, 0, 0)}, {(1, 0, 0, 0)} and

S1 = {(a0, a1, a2, a3) : a0 ∈ {0, 1} and ∃k ∈ {1, 2, 3}, ak = 1}.

The 14 configurations of this last set can be considered together, as their tran-
sition probabilities are the same. This is similar to the case n = 2, when (0, 1),
(1, 0) and (1, 1) were grouped.
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Case ft ∈ S1: For this case, we can reduce the boundary to a length equal
to 3, as the mean increment in one time step is enough. Hence, in the transition,
we do not care about the value of Xjt+1−3, as illustrated on Figure 6. If j̃t = j̃
and ft = f ∈ S1, then, we have(
j̃t+1, (Xjt+1−2, Xjt+1−1, Xjt+1)

)
=

(j̃ − 1 + k, (0, 0, 0)) w.p. (1− ϵ1)
3−kϵk0r for k ∈ {0, 1, 2};

(j̃ + 2 + k, (0, 0, 0)) w.p. (ϵ0 + ϵ1)
kϵ30r for k ∈ N;

(j̃ − l + k, {0, 1}2−l × {1} × {0}l) w.p. ϵ1(1− ϵ1)
l−kϵk0r for l ∈ {0, 1, 2} and 0 ≤ k ≤ l;

(j̃ − l + k, {0, 1}2−l × {1} × {0}l) w.p. (ϵ0 + ϵ1)
k−l−1ϵ1ϵ

l
0r for l ∈ {0, 1} and l + 1 ≤ k ≤ 2;

(j̃ + 3− l + k, {0, 1}2−l × {1} × {0}l) w.p. (ϵ0 + ϵ1)
k+2−lϵ1ϵ

l
0r for l ∈ {0, 1, 2} and k ∈ N;

We then obtain the following mean increment:

E
[
J̃t|ft ∈ S1

]
=

2∑
k=0

(−1 + k)(1− ϵ1)
3−kϵk0r + . . .

= −1 + ϵ0 + 2ϵ1 + ϵ20 + 3ϵ21(1− ϵ1) + ϵ0ϵ1(1− ϵ0) + ϵ41 + ϵ30ϵ1 +
(1− r)3

r
> −1.

(12)

This can be checked by hand or with the help of a computer algebra system.
Hence, we proved Equation (2) for any f ∈ S1. For the two others cases (f =
(0, 0, 0, 0) or f = (1, 0, 0, 0)), we have to consider two time steps. The case
ft = (1, 0, 0, 0) is considered first.

Case ft = (1, 0, 0, 0): As illustrated on Figure 7, if j̃t = j̃ and ft = (1, 0, 0, 0),
then

(j̃t+1, ft+1) =

(j̃ − 2 + k, (0, 0, 0, 0)) w.p. (1− ϵ1)
3−kϵ1+k

0 r for k ∈ {0, 1, 2, 3};
(j̃ − 2 + k, (1, 0, 0, 0)) w.p. ϵ1(1− ϵ1)

2−kϵ1+k
0 r for k ∈ {0, 1, 2};

(j̃ + 1, (1, 0, 0, 0)) w.p. (1− ϵ0)ϵ
3
0r;

(j̃ − 1 + k − l, {0, 1}3−l × {1} × {0}l) w.p. ϵk+1
0 ϵ1(1− ϵ1)

l−(k+1)r for l ∈ {1, 2} and 0 ≤ k ≤ l − 1;

(j̃ − 1, {0, 1}3−l × {1} × {0}l) w.p. (1− ϵ0)ϵ
l
0r for l ∈ {0, 1, 2};

(j̃ − 1 + k − l, {0, 1}3−l × {1} × {0}l) w.p. (ϵ0 + ϵ1)
k−(l+1)ϵ1ϵ

l
0r for l ∈ {0, 1, 2} and l + 1 ≤ k ≤ 3;

(j̃ + 2 + k, (0, 0, 0, 0)) w.p. (ϵ0 + ϵ1)
kϵ40r for k ∈ N;

(j̃ + 2 + k, (1, 0, 0, 0)) w.p. (ϵ0 + ϵ1)
kϵ1ϵ

3
0r for k ∈ N;

(j̃ + 3 + k − l, {0, 1}3−l × {1} × {0}l) w.p. (ϵ0 + ϵ1)
3+k−lϵ1ϵ

l
0r for l ∈ {0, 1, 2} and k ∈ N;

(13)
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j̃

∗ 0

1− ϵ1

1

ϵ1

0

1− ϵ1

1

ϵ1

0

1− ϵ1

1

ϵ1

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0|1 0|1 0|1 1 ? ? ?

∗ 0|1 0|1 1 0 ? ?

∗ ∗ 0|1 1 0 0 ?

Fig. 6: Transition probabilities of the different cells when the state f of
the boundary belongs to S1. Precisely, the first line corresponds to f ∈
{(0, 1, 0, 0), (1, 1, 0, 0}, the second line to f ∈ {0, 1}2 × {1} × {0}, and the third
line to f ∈ {0, 1}3 × {1}. The boundary position j depends on the case, but the
modified boundary j̃ is always the same.

j̃

0

1− ϵ1

1

ϵ1

0

1− ϵ1

1

ϵ1

0

1− ϵ1

1

ϵ1

0

ϵ0

1

1− ϵ0

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

∗ ∗ 1 0 0 0 ? ?

0

1− ϵ1

0

ϵ0

1

ϵ1

∗

r

0

1− ϵ1

0

ϵ0

1

ϵ1

∗

r

0

ϵ0

1

1− ϵ0

0

ϵ0

1

1− ϵ0

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

0

ϵ0

1

ϵ1

?

r

∗ ∗ 0 0 0 0 ? ?

Fig. 7: Transition probabilities when the boundary is in state (1, 0, 0, 0), resp.
(0, 0, 0, 0) and j̃ the position of the modified boundary.
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We obtain then the following formula for the mean increment in two time
steps when ft = (1, 0, 0, 0):

E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
= E

[
J̃t|ft = (1, 0, 0, 0)

]
+ P (ft+1 ∈ S1|ft = (1, 0, 0, 0))E

[
J̃t+1|ft+1 ∈ S1

]
+ P (ft+1 = (1, 0, 0, 0)|ft = (1, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
+ P (ft+1 = (0, 0, 0, 0)|ft = (1, 0, 0, 0))E

[
J̃t+1|ft+1 = (0, 0, 0, 0)

]
(14)

From Equations (12) and (13), we have computed or we can compute all the
previous terms except E

[
J̃t+1|ft+1 = (0, 0, 0, 0)

]
. In particular, with the help of

a computer algebra system, one finds

E
[
J̃t|ft = (1, 0, 0, 0)

]
= −1−ϵ0+ϵ1+ϵ20+ϵ21+2ϵ0ϵ1+2ϵ30+2ϵ0ϵ

2
1−ϵ40−ϵ0ϵ

3
1+

(1− r)3

r
.

(15)
For the missing term, we have to look at the transitions when ft = (0, 0, 0, 0).

Case ft = (0, 0, 0, 0): If j̃t = j and ft = (0, 0, 0, 0), then

(j̃t+1, ft+1) =

(≥ j̃ − 3, (1, ∗, 0, 0)) w.p. ϵ1rϵ20r;
(≥ j̃ − 3, {0, ∗} × {∗} × {0}2) w.p. (1− ϵ1)rϵ

2
0r;

(j̃ − 2 + k, (∗, 0, 0, 0)) w.p. rϵ30r for k ∈ {0, 1};
(j̃ − 3, {0, 1, ∗} × {1} × {0}2) w.p. ϵ1ϵ20r;
(j̃ − 2, {0, 1, ∗} × {1} × {0}2) w.p. (1− ϵ0)ϵ

2
0r;

(j̃ − 2 + k, (0, 0, 0, 0)) w.p. ϵ40r for k ∈ {0, 1, 2, 3};
(j̃ − 2 + k, (1, 0, 0, 0)) w.p. ϵ1ϵ30r for k ∈ {0, 1};
(j̃ − 2 + k, (1, 0, 0, 0)) w.p. (1− ϵ0)ϵ

3
0r for k ∈ {2, 3};

(j̃ − 1, {0, 1, ∗}2 × {0, 1} × {1}) w.p. (1− ϵ0)r;

(j̃, {0, 1, ∗} × {0, 1}2 × {1}) w.p. ϵ1r;
(j̃ − 2, {0, 1, ∗}2 × {1} × {0}) w.p. (1− ϵ0)ϵ0r;

(j̃ − 1, {0, 1, ∗} × {0, 1} × {1} × {0}) w.p. (1− ϵ0)ϵ0r;

(j̃ + 1 + k, {0, 1}3 × {1}) w.p. (ϵ0 + ϵ1)
k+1ϵ1r for k ∈ {0, 1};

(j̃ + k, {0, 1}2 × {1} × {0}) w.p. (ϵ0 + ϵ1)
kϵ1ϵ0r for k ∈ {0, 1};

(j̃ − 1, {0, 1} × {1} × {0}2) w.p. (1− ϵ0)ϵ
2
0r

(j̃, {0, 1} × {1} × {0}2) w.p. ϵ1ϵ20r;
(j̃ + 2 + k, (0, 0, 0, 0)) w.p. (ϵ0 + ϵ1)

kϵ40r for k ∈ N;

(j̃ + 2 + k, (1, 0, 0, 0)) w.p. (ϵ0 + ϵ1)
kϵ1ϵ

3
0r for k ∈ N;

(j̃ + 3− l + k, {0, 1}4−l × {1} × {0}l) w.p. (ϵ0 + ϵ1)
k+3−lϵ1ϵ

l
0r for l ∈ {0, 1, 2} and k ∈ N.

(16)
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This allows to find, with the help of a computer algebra system, the following
lower bound, denoted by I0, for E

[
J̃t|ft = (0, 0, 0, 0)

]
:

E
[
J̃t|ft = (0, 0, 0, 0)

]
≥ −1− ϵ0 + ϵ1 − ϵ20 + ϵ21 + 3ϵ0ϵ1 + 6ϵ30 + 2ϵ20ϵ1 − 3ϵ40 − 3ϵ30ϵ1 +

(1− r)3

r
= I0.

(17)

Unfortunetaly, the lower bound I0 is not greater than −1 for any ϵ0 and ϵ1.

Back to the lower bound of E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
. By putting the

lower bound I0 in the Equation (14), see Appendix 6.2 for details, we find that

E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
> −2. (18)

To conclude the proof, we now prove that the same inequality holds for ft =
(0, 0, 0, 0).

Lower bound of E
[
J̃t + J̃t+1|ft = (0, 0, 0, 0)

]
. Using Equation (16), we

obtain

E
[
J̃t + J̃t+1|ft = (0, 0, 0, 0)

]
= E

[
J̃t|ft = (0, 0, 0, 0)

]
+ ϵ1ϵ

2
0r

2E
[
J̃t+1|ft+1 = (1, ∗, 0, 0)

]
+ · · ·+

(
2∑

l=0

∞∑
k=0

(1− r)k+3−lϵl0ϵ1ϵ
l
0r

)
E
[
J̃t+1|ft+1 ∈ S1

]
.

Finally, there are three terms that are not known and that we have to bound by
below. For shortness, we denote by E∗ the set {0, ∗}×{∗}×{0}2. By considering
all the possible types of boundary in each subset, similarly as in Equation (9),
we obtain

E
[
J̃t|ft = (∗, 0, 0, 0)

]
≥ min

(
E
[
J̃t|ft = (0, 0, 0, 0)

]
,E
[
J̃t|ft = (1, 0, 0, 0)

])
;

E
[
J̃t|ft = (1, ∗, 0, 0)

]
≥ min

(
E
[
J̃t|ft = (1, 0, 0, 0)

]
,E
[
J̃t|ft ∈ S1

])
;

E
[
J̃t|ft ∈ E∗

]
≥ min

(
E
[
J̃t|ft = (0, 0, 0, 0)

]
,E
[
J̃t|ft = (1, 0, 0, 0)

]
,E
[
J̃t|ft ∈ S1

])
.

For any (ϵ0, ϵ1) ∈ [0, 1
2 ]

2, we have, see Appendices 6.3 and 6.4, the two following
inequalities:

E
[
J̃t|ft ∈ S1

]
≥ I0 and E

[
J̃t|ft ∈ S1

]
≥ E

[
J̃t|ft = (1, 0, 0, 0)

]
.
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Hence,

E
[
J̃t|ft = (∗, 0, 0, 0)

]
≥ min

(
I0,E

[
J̃t|ft = (1, 0, 0, 0)

])
;

E
[
J̃t|ft = (1, ∗, 0, 0)

]
≥ E

[
J̃t|ft = (1, 0, 0, 0)

]
;

E
[
J̃t|ft ∈ E∗

]
≥ min

(
I0,E

[
J̃t|ft = (1, 0, 0, 0)

])
.

Finally, we get

E
[
J̃t + J̃t+1|ft = (0, 0, 0, 0)

]
≥ I0 + P (ft+1 = (0, 0, 0, 0)|ft = (0, 0, 0, 0)) I0

+ P (ft+1 ∈ S1|ft = (0, 0, 0, 0))E
[
J̃t+1|ft+1 ∈ S1

]
+ P (ft+1 ∈ {(1, 0, 0, 0), (1, ∗, 0, 0)}|ft = (0, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
+ P (ft+1 = (∗, 0, 0, 0) ∪ E∗|ft = (0, 0, 0, 0))min

(
I0,E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

])
(19)

The value of min
(
I0,E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

])
can be the left or the right

term, depending on the values of ϵ0 and ϵ1. Nevertheless, in Appendix 6.5, we
prove that in both cases it is greater than −2, and so

E
[
J̃t + J̃t+1|ft = (0, 0, 0, 0)

]
> −2. (20)

Combined with Equations (12) and (18), it implies Equation (2) when n = 3,
and so Theorem 1 for n = 3.

5 Perspectives

We have proved the desired result for n = 2 and n = 3, by examining the
behaviour of the boundaries of decorrelated islands. The ergodicity of the hard-
core PCA for n ≥ 4 is still an open question. Our method could be used to handle
the case of larger values of n, but the computations are becoming increasingly
complex with the size of the neighbourhood, so that the n = 4 case is already
difficult to tackle. However, one can ask whether there could be an automated
way of handling larger neighbourhoods, and perhaps also other classes of PCA.

Concerning specifically the hard-core PCA, it seems that for fixed ϵ0, the
mean increment in 1 (and 2) time step(s) is an increasing function in ϵ1. If this
is indeed the case, it could simplify the analysis.
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6 Appendices

6.1 Lower bound of E
[
J̃t + J̃t+1|ft = (0, 0)

]
for n = 2

By Equation (7), Inequalities (8) and (9), and Equality (5), we obtain the fol-
lowing lower bound:

E
[
J̃t + J̃t+1|ft = (0, 0)

]
≥ (1 + ϵ0r

2 + 2ϵ20r + ϵ20)

(
−1

2
r2 − 2ϵ0r + ϵ20r +

1

2
ϵ21 +

(1− r)2

r

)
+ (1− ϵ0r

2 − 2ϵ20r − ϵ20)

(
−1

2
r + ϵ1r +

1

2
ϵ0(1− ϵ1)r +

1

2
ϵ21r +

1

2
(1− r)2 +

1

2
ϵ21 +

(1− r)2

r

)
.

Using a computer algebra system, we find the following polynomial expression
in ϵ0 and ϵ1:

E
[
J̃t + J̃t+1|ft = (0, 0)

]
≥ −1 + 2

(1− r)2

r

+ ϵ60 +
3

2
ϵ50ϵ1︸ ︷︷ ︸

≥0

+
7

2
ϵ40︸︷︷︸

(1)

+6ϵ30ϵ
2
1︸ ︷︷ ︸

(2)

+
5

2
ϵ20ϵ

3
1︸ ︷︷ ︸

≥0

+4ϵ20ϵ1︸ ︷︷ ︸
(3)

+
3

2
ϵ20︸︷︷︸

(4)

+
1

2
ϵ0ϵ

5
1︸ ︷︷ ︸

≥0

+ ϵ0ϵ
3
1 + ϵ0ϵ

2
1︸ ︷︷ ︸

(5)

+
5

2
ϵ1︸︷︷︸

(6)

−

 7

2
ϵ50︸︷︷︸

(1)

+ ϵ40ϵ
2
1︸︷︷︸

(2)

+
3

2
ϵ40ϵ1︸ ︷︷ ︸
(6)

+2ϵ30ϵ
3
1︸ ︷︷ ︸

(2)

+4ϵ30ϵ1︸ ︷︷ ︸
(3)

+
3

2
ϵ30︸︷︷︸

(4)

+
13

2
ϵ20ϵ

2
1 +

3

2
ϵ0ϵ

4
1︸ ︷︷ ︸

(5)

+
1

2
ϵ0ϵ1︸ ︷︷ ︸
(6)

 .

Now, we regroup terms of the form cϵα0
0 ϵα1

1 with terms of the form −cϵβ0

0 ϵβ1

1 ,
with α0 ≤ α1 and β0 ≤ β1, in such a way that their sums are

cϵα0
0 ϵα1

1 (1− ϵβ0−α0

0 ϵβ1−α1

1 ) ≥ 0

for any ϵ0, ϵ1 ∈ [0, 1].
We then obtain

E
[
J̃t + J̃t+1|ft = (0, 0)

]
≥ −1 + 2

(1− r)2

r
− 13

2
ϵ20ϵ

2
1

+(6− 1− 2)ϵ30ϵ
2
1︸ ︷︷ ︸

(2)

+

(
1− 1

2

)
ϵ0ϵ

2
1︸ ︷︷ ︸

(5)

+

(
5

2
− 3

2
− 1

2

)
ϵ1︸ ︷︷ ︸

(6)

.

To conclude, remark that

2
(1− r)2

r
= 2(1− r)2 + 2

(1− r)3

r

≥ 2(ϵ0 + ϵ1)
2 = 2ϵ20 + 4ϵ0ϵ1 + 2ϵ21.

This is enough to compensate the last negative term −13

2
ϵ20ϵ

2
1.
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6.2 Lower bound of E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
for n = 3

By Equations (14), (13), (12), (15) and (17), we obtain the following lower bound:

E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
≥ E

[
J̃t|ft = (1, 0, 0, 0)

]
+ P (ft+1 ∈ S1|ft = (1, 0, 0, 0))E

[
J̃t+1|ft+1 ∈ S1

]
+ P (ft+1 = (1, 0, 0, 0)|ft = (1, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
+ P (ft+1 = (0, 0, 0, 0)|ft = (1, 0, 0, 0)) I0.

Now, replacing the value in ϵ0 and ϵ1 according to (13), (12), (15) and (17),
and with the help of a computer algebra system, we obtain

E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
≥ −2 + 2

(1− r)3

r

+ 3ϵ1 + 4ϵ21︸︷︷︸
(1)

+ϵ41 + 2ϵ0ϵ1 + 3ϵ0ϵ
2
1 + 5ϵ0ϵ

3
1 + 14ϵ0ϵ

5
1︸ ︷︷ ︸

(2)

+ϵ0ϵ
7
1 + 7ϵ20ϵ1 + 13ϵ20ϵ

3
1︸ ︷︷ ︸

(3)

+ 10ϵ20ϵ
5
1 + ϵ20ϵ

7
1 + 11ϵ30ϵ1 + 26ϵ30ϵ

3
1︸ ︷︷ ︸

(4)

+2ϵ30ϵ
5
1 + 3ϵ40︸︷︷︸

(5)+(6)

+49ϵ40ϵ
2
1︸ ︷︷ ︸

(7)

+18ϵ40ϵ
4
1

+ 12ϵ50ϵ1 + 11ϵ50ϵ
3
1 + 2ϵ60ϵ

2
1 + 3ϵ70︸︷︷︸

(6)

+3ϵ80ϵ1 + 2ϵ90

− ( 3ϵ31︸︷︷︸
(1)

+15ϵ0ϵ
4
1 + 6ϵ0ϵ

6
1︸ ︷︷ ︸

(2)

+13ϵ20ϵ
2
1 + 12ϵ20ϵ

4
1︸ ︷︷ ︸

(3)

+5ϵ20ϵ
6
1︸ ︷︷ ︸

(2)

+25ϵ30ϵ
2
1 + 12ϵ30ϵ

4
1︸ ︷︷ ︸

(4)

+24ϵ40ϵ1

+ 43ϵ40ϵ
3
1︸ ︷︷ ︸

(7)

+3ϵ40ϵ
5
1︸ ︷︷ ︸

(4)

+ ϵ50︸︷︷︸
(5)

+19ϵ50ϵ
2
1 + 2ϵ50ϵ

4
1︸ ︷︷ ︸

(5)

+ϵ60ϵ1 + ϵ60ϵ
3
1 + 4ϵ70ϵ1 + 5ϵ80︸︷︷︸

(6)

)

As in Appendix 6.1, we regroup terms of the form cϵα0
0 ϵα1

1 with terms of the
form −cϵβ0

0 ϵβ1

1 , with α0 ≤ α1 and β0 ≤ β1. The last negative terms are then
compensated by terms in

(1− r)3

r
= (ϵ0 + ϵ1)

3 + · · ·+ (ϵ0 + ϵ1)
8 +

(1− r)9

r
.

Thus, E
[
J̃t + J̃t+1|ft = (1, 0, 0, 0)

]
> −2.
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6.3 Proof that E
[
J̃t|ft ∈ S1

]
≥ I0 for n = 3

Equations (12) and (17) give that

E
[
J̃t|ft ∈ S1

]
− I0

= ϵ0 + 2ϵ1 + ϵ20 + 3ϵ21 − 3ϵ31 + ϵ0ϵ1 − ϵ20ϵ1 + ϵ41 + ϵ30ϵ1

−
(
−ϵ0 + ϵ1 − ϵ20 + ϵ21 + 3ϵ0ϵ1 + 6ϵ30 + 2ϵ20ϵ1 − 3ϵ40 − 3ϵ30ϵ1

)
= 2ϵ0 + ϵ1 + 2ϵ20 + 2ϵ21︸ ︷︷ ︸+ϵ41 + 4ϵ30ϵ1 + 3ϵ40 − (3ϵ31 + 2ϵ0ϵ1︸ ︷︷ ︸+3ϵ20ϵ1 + 6ϵ30)

We use a remarkable identity to bound by below the underbraced terms. For
the others negative terms, we use the fact that 0 ≤ ϵ0, ϵ1 ≤ 1/2. Hence,

3ϵ31 ≤ 3

(
1

2

)2

ϵ1, 3ϵ20ϵ1 ≤ 3

4
ϵ0, and 6ϵ30 = 4ϵ30 + 2ϵ30 ≤ ϵ0 + ϵ20.

E
[
J̃t|ft ∈ S1

]
− I0

≥ 2ϵ0 + ϵ1 + ϵ20 + ϵ21 + (ϵ0 − ϵ1)
2︸ ︷︷ ︸+ϵ41 + 4ϵ30ϵ1 + 3ϵ40 −

(
3

4
ϵ1 +

3

4
ϵ0 + ϵ0 + ϵ20

)
=

1

4
ϵ0 +

1

4
ϵ1 + ϵ21 + (ϵ0 − ϵ1)

2 + ϵ41 + 4ϵ30ϵ1 + 3ϵ40 > 0.

6.4 Proof that E
[
J̃t|ft ∈ S1

]
≥ E

[
J̃t|ft = (1, 0, 0, 0)

]
for n = 3

Equations (12) and (15) give that

E
[
J̃t|ft ∈ S1

]
− E

[
J̃t|ft = (1, 0, 0, 0)

]
= ϵ0 + 2ϵ1 + ϵ20 + 3ϵ21 − 3ϵ31 + ϵ0ϵ1 − ϵ20ϵ1 + ϵ41 + ϵ30ϵ1

− (−ϵ0 + ϵ1 + ϵ20 + ϵ21 + 2ϵ0ϵ1 + 2ϵ30 + 2ϵ0ϵ
2
1 − ϵ40 − ϵ0ϵ

3
1)

= 2ϵ0 + ϵ1 + 2ϵ21 + ϵ41 + ϵ30ϵ1 + ϵ40 + ϵ0ϵ
3
1

− (3ϵ31 + ϵ0ϵ1 + ϵ20ϵ1 + 2ϵ30 + 2ϵ0ϵ
2
1).

As in Appendix 6.3, the fact that 0 ≤ ϵ0, ϵ1 ≤ 1/2 allows us to bound by
below the negative terms.

E
[
J̃t|ft ∈ S1

]
− E

[
J̃t|ft = (1, 0, 0, 0)

]
≥ 2ϵ0 + ϵ1 + 2ϵ21 + ϵ41 + ϵ30ϵ1 + ϵ40 + ϵ0ϵ

3
1 −

(
3

4
ϵ1 +

1

2
ϵ0 +

1

4
ϵ1 +

1

2
ϵ0 +

1

2
ϵ0

)
=

1

2
ϵ0 + 2ϵ21 + ϵ41 + ϵ30ϵ1 + ϵ40 + ϵ0ϵ

3
1 > 0.
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6.5 Lower bounds of E
[
J̃t + J̃t+1|ft = (0, 0, 0, 0)

]
for n = 3

When the minimum is I0: The lower bound of Equation (19) becomes

D0 = I0 + P (ft+1 = (0, 0, 0, 0)|ft = (0, 0, 0, 0)) I0

+ P (ft+1 ∈ S1|ft = (0, 0, 0, 0))E
[
J̃t+1|ft+1 ∈ S1

]
+ P (ft+1 ∈ {(1, 0, 0, 0), (1, ∗, 0, 0)}|ft = (0, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
+ P (ft+1 = (∗, 0, 0, 0) ∪ E∗|ft = (0, 0, 0, 0)) I0

Now, replace the terms of this equation by their values given in Equa-
tions (17), (12), (15) and deduced from Equation (16). With the help of a com-
puter algebra system, we obtain

D0 = −2 + 2
(1− r)3

r

+ 3ϵ1 + 4ϵ21 + ϵ41 + 4ϵ0ϵ1 + 6ϵ20ϵ
3
1 + 5ϵ20ϵ

5
1 + 4ϵ30 + 2ϵ30ϵ1 + 14ϵ30ϵ

3
1 + 5ϵ30ϵ

5
1 + 15ϵ40ϵ1

+ ϵ40ϵ
4
1 + 10ϵ50 + 15ϵ50ϵ

2
1 + 2ϵ50ϵ

4
1 + 6ϵ60ϵ1 + 6ϵ70 + 3ϵ70ϵ

2
1 + 8ϵ80ϵ1 + 4ϵ90

− (3ϵ31 + 9ϵ20ϵ
4
1 + ϵ20ϵ

6
1 + 10ϵ30ϵ

2
1 + 11ϵ30ϵ

4
1 + ϵ30ϵ

6
1 + 9ϵ40 + 7ϵ40ϵ

2
1 + ϵ40ϵ

3
1 + 18ϵ50ϵ1

+ 8ϵ50ϵ
3
1 + 3ϵ60 + 4ϵ60ϵ

2
1 + 11ϵ70ϵ1 + 10ϵ80)

We conclude that it is greater than −2 as in Appendices 6.1 and 6.2, by
grouping terms and developing (1− r)3/r as much as necessary.

This technique does not hold for the term in ϵ40. Indeed, we obtain 6ϵ30 − 7ϵ40
after that. To prove its positivity, we use the fact that ϵ0 ≤ 1/2, and so 6ϵ30−7ϵ40 ≥
(6− 7/2)ϵ30 > 0.

When the minimum is E
[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
: The lower bound of

Equation (19) becomes

D1 = I0 + P (ft+1 = (0, 0, 0, 0)|ft = (0, 0, 0, 0)) I0

+ P (ft+1 ∈ S1|ft = (0, 0, 0, 0))E
[
J̃t+1|ft+1 ∈ S1

]
+ P (ft+1 ∈ {(1, 0, 0, 0), (1, ∗, 0, 0)}|ft = (0, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
+ P (ft+1 = (∗, 0, 0, 0) ∪ E∗|ft = (0, 0, 0, 0))E

[
J̃t+1|ft+1 = (1, 0, 0, 0)

]
Now, replace the terms of this equation by their values given in Equa-

tions (17), (12), (15) and deduced from Equation (16). With the help of a com-
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puter algebra system, we obtain

D1 = −2 + 2
(1− r)3

r

+ 3ϵ1 + 4ϵ21 + ϵ41 + 4ϵ0ϵ1 + 6ϵ20ϵ
3
1 + 5ϵ20ϵ

5
1 + 4ϵ30 + ϵ30ϵ1 + 4ϵ30ϵ

3
1 + 7ϵ40ϵ1 + 5ϵ40ϵ

2
1

+ 3ϵ40ϵ
4
1 + 6ϵ50 + 14ϵ50ϵ

3
1 + 10ϵ60ϵ1 + 22ϵ70 + 12ϵ70ϵ

2
1 + 20ϵ80ϵ1 + 8ϵ90

− (3ϵ31 + 9ϵ20ϵ
4
1 + ϵ20ϵ

6
1 + 5ϵ30ϵ

2
1 + ϵ30ϵ

4
1 + 7ϵ40 + 9ϵ40ϵ

3
1

+ 15ϵ50ϵ
2
1 + 4ϵ50ϵ

4
1 + 7ϵ60 + 4ϵ60ϵ

3
1 + 36ϵ70ϵ1 + 24ϵ80).

We conclude that it is greater than −2 as in Appendices 6.1 and 6.2, by
grouping terms and developing (1− r)3/r as much as necessary.


