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Cellular automata

Cellular automata (CA) are completely discrete dynamical systems

Modeling tool States Space Time
ODEs and PDEs C C C
Systems of ODEs C D C
Coupled map lattices C D D
Interacting particle systems D D C
CA and PCA D D D
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Cellular automata

Components of a CA:

The “alphabet”: finite set ω = {0,1, . . . ,n−1}

The “lattice”: vertex-labelled graph Λ (usually Λ⊆ Zd)

The “time”: integer index t > 0

The “state”: xt = (xt
1, . . . ,x

t
L) ∈ ωΛ

The “rule”: map Φ : ωΛ→ ωΛ such that xt+1 = Φ(xt)

Usually xt+1
i = [Φ(xt)]i = φi(xt) depends only on a finite

neighborhood of xt
i and all φi( ·) are equal =⇒ rule table
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Probabilistic cellular automata

If the rule Φ depends on a random variable, the CA becomes a
probabilistic CA (PCA). We talk about the dynamics as “noisy”

Several different types of noise can be introduced:

Reading error: sometimes one or more input cells are mistaken
— e. g., xt

i is read as 1− xt
i in a two-state model

Writing error: sometimes xt+1
i gets a random value from ω

Omission: sometimes xt+1
i = xt

i irrespective of the dynamics

Systematic error: sometimes the dynamics evolve by some other
rule than the intended rule

All PCA, no matter how they have been conceived, can be understood
as being of this later type: a probabilistic mixture of CA
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Mixed cellular automata

Probabilistic cellular automata

Example of a mixed PCA

ECA 184 with errors of “reading” type

Sometimes, with probability p, ECA 184 mistakes the central bit. . .
One obtains the following rule table for the resulting PCA:

111 110 101 100 011 010 001 000
1−p 1 0 1 1 1 0 0 0

p 1 1 1 0 0 0 1 0

First line: ECA 184 with probability 1−p
Second line: ECA 226 with probability p

We call the resulting rule PCA (1−p)184–p226
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PCA dynamics and mean field approximation

The probability Pt(x) of observing the PCA in state x at instant t
given an initial distribution P0(x) is given by

Pt+1(x′) = ∑
x∈Ω

Φ(x′ |x)Pt(x),

0 6 Φ(x′ |x)6 1 is the one-step conditional probability for x→ x′

Since the cells are updated simultaneously and independently

Φ(x′ |x) =
L

∏
i=1

φ(x′i |x)
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PCA dynamics and mean field approximation

In d = 1 with Φ(x′ |x) = ∏i φ(x′i |xi−1, xi, xi+1) the dynamics of the
marginal probability distribution Pt+1(x) of observing a cell in state x
at instant t obeys

Pt+1(x′i) = ∑
xi−1,xi,xi+1

φ(x′i |xi−1, xi, xi+1)Pt(xi−1, xi, xi+1)

We see that Pt(xi) depends on Pt(xi−1, xi, xi+1) which depend on
Pt(xi−2, xi−1, xi, xi+1, xi+2) and so on. . .

full many-body problem that in general cannot be solved exactly

Simplest approach to get a closed set of equations:

Pt(xi−1, xi, xi+1)≈ Pt(xi−1)Pt(xi)Pt(xi+1)

a. k. a. single-cell mean field approximation

8 / 47
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Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The strugle for life

In the strugle for life—eating, moving, mating—two basic tenets are:

Logistic limitation to growth: intraspecies competition favor
low population densities—more food and space and less
competition per capita allows for increased rates of reproduction

and God said unto them, Be fruitful, and multiply, and replenish
the earth, and subdue it (Genesis 1:28)

Allee effects: low population densities can result in mate
limitation, debilitated cooperative defense and feeding,
unsubstantial predator satiation, dispersal, and habitat alteration,
amongst others

And the Lord God said, It is not good that the man should be
alone; I will make him an help meet for him (Genesis 2:18)

10 / 47



Cellular automata under noise

Mixed cellular automata

Mixed PCA inspired by population dynamics

The discrete logistic growth model

The dynamics of a single-species population subject to limiting
resources can be described by the logistic map

xt+1 = xtg(xt) = rxt

(
1− xt

K

)

xt > 0 represents the size of the population

r > 0 is the maximum potential individual rate of reproduction

K > 0 is the carrying capacity (maximum population viable
under the given ecological conditions)

g(xt)> 0 is the intrinsic growth rate function of the population

11 / 47
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Intrinsic growth rate function including weak Allee effects

Intrinsic growth rate function displaying
combined features of logistic limitation
to growth and weak Allee effect

−A 0 1
2(K−A ) K

xt

r

g(xt)

The simplest way to obtain this combined behavior is to extend the
logistic map as

g(±)(xt) = r
(

1− xt

K

)(xt

A
±1
)
,

where 0 < A < K represents a critical population threshold
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Mixed PCA for single-species population dynamics

We want to propose a PCA to model the dynamics of a single-species
population driven both by logistic growth and weak Allee effect:

No spontaneous generation: φ(1 |000) = 0

Logistic limitation to growth: birth rates 0→ 1 and survival
1→ 1 decrease with increased local density of individuals:
φ(1 |101) = φ(1 |111) = p

Demographic Allee effect: birth rates 0→ 1 and survival 1→ 1
are hampered by low density of individuals:
φ(1 |100) = φ(1 |010) = φ(1 |001) = p

Individuals that are neither lone nor in too packed a
neighbourhood endure indefinitely: φ(1 |110) = φ(1 |011) = 1
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Mixed PCA for single-species population dynamics

The mixed PCA embodying the rationale given before has rule table

111 110 101 100 011 010 001 000
p 1 1 1 1 1 1 1 0

1−p 0 1 0 0 1 0 0 0

We obtained PCA p254–(1−p)72
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Mixed PCA inspired by population dynamics

Mean field solution

The single-cell mean field equation for PCA p254–q72 reads

xt+1 = px3
t +(2+p)x2

t (1− xt)+3pxt(1− xt)
2

with the expected structure for discrete-time models of population
dynamics including Allee effects: xt+1 = xtg(xt) with quadratic g(xt)

In the stationary state we must have xt+1 = xt ≡ x∞ and the MF map
has solutions x(0)∞ = 0 (absorbing state devoid of individuals) and

x(±)∞ =
(5p−2)±

√
(5p−2)2−4(3p−2)(3p−1)

2(3p−2)
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Mean field solution
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Critical points and density profiles Re{x(±)∞ (p)} from the mean field solution
and xL(p) from direct Monte Carlo simulations of PCA p254–(1−p)72 with
L = 10000 cells averaged over 10000 samples
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Space-time diagram of PCA p254–q72

Space-time diagram of PCA p254–q72
at p = 7/18' 0.389 > p∗ ' 0.381.
L = 200 cells under p. b. c. evolved for
200 time steps (from top to bottom)
from an initially random state of
density ∼ 2/3.
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Other mixed PCA inspired by population dynamics

The most general left-right symmetric 1d “elementary PCA”

111 110 101 100 011 010 001 000
0 1− f 1−d 1− e 1−b 1−d 1− c 1−b 1−a
1 f d e b d c b a

The single-cell mean field equation for this PCA reads (xt = Pt(1))

xt+1 = a(1− xt)
3 +(2b+ c)xt(1− xt)

2 +(2d+ e)x2
t (1− xt)+ fx3

t

When do this equation corresponds to a population dynamics model?
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Other mixed PCA inspired by population dynamics

We set a = 0, u = 2b+c and v = 2d+e and obtain xt+1 = xtg(xt) with

g(xt) = u+(v−2u)xt +(u− v+ f )x2
t

Case I – Quadratic logistic map
We must have [1]> 0, [xt]< 0 and [x2

t ] = 0, leading to the conditions

u > 0, −2u+ v < 0, u− v+ f = 0

Case II – Cubic map with weak Allee effect
We must have [1]> 0, [xt]> 0 and [x2

t ]< 0, leading to the conditions

u > 0, −2u+ v > 0, u− v+ f < 0
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Solution sets

u

v

0 1 2 3
0

1

2

3

Projection on the uv-plane of the
solution set for Case I

u v

f

(3
2,3,0)

Solution set for Case II. The simplex has
vertices at (u,v, f ) = (0,0,0), (3

2 ,3,0),
(0,3,0), (1,2,1), (3

2 ,3,1), (0,3,1), (0,1,1)
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One-parameter solutions

If we parametrize a, b, . . . , f by a single parameter p ∈ [0,1] we
conclude that each become given either by p or by 1−p

Imposing a(p) = 0 and taking symmetries into account reduce the
number of possible cases to 16
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One-parameter mixed PCA

Case I – Quadratic logistic map
In this case f = (2d+ e)− (2b+ c) = f (b(p), c(p), d(p), e(p)) and we
have to examine only eight possible parametrizations for b, c, d, and e

The solution sets are given as line segments (equations in symmetic
form) in the (u,v, f ) space. In all cases f = (2d+e)− (2b+c) = v−u

(a,b,c,d,e, f ) SI(a,b,c,d,e, f ;p)
(0,p,p,p,p,∗) u/3 = v/3 ∈ (0,1], f = 0
(0,p,p,p,q,∗) u/3 = v−1 = (1− f )/2 ∈ (1

5 ,
1
2 ]

(0,p,p,q,p,∗) u/3 = 2− v = (2− f )/4 ∈ (2
7 ,

1
2 ]

(0,p,p,q,q,∗) u/3 = (3− v)/3 = (3− f )/6 ∈ (1
3 ,

1
2 ]

(0,p,q,p,p,∗) u−1 = v/3 = (1+ f )/2 ∈ [1
2 ,1]

(0,p,q,p,q,∗) u−1 = v−1 ∈ [0,1], f = 0
(0,p,q,q,p,∗) u−1 = 2− v = (1− f )/2 ∈ (0, 1

2 ]

(0,p,q,q,q,∗) u−1 = (3− v)/3 = (2− f )/4 ∈ [1
4 ,

1
2 ]
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One-parameter mixed PCA

Case II – Cubic map with weak Allee effect
The solution sets are given as line segments (equations in symmetic
form) in the (u,v, f ) space

The last column gives the mixed rule specification of the PCA

(a,b,c,d,e, f ) SII(a,b,c,d,e, f ;p) Mixed PCA
(0,p,p,p,q,p) u/3 = v−1 = f ∈ (0, 1

5) p222–q32
(0,p,p,q,p,p) u/3 = 2− v = f ∈ (0, 2

7) p182–q72
(0,p,p,q,p,q) u/3 = 2− v = 1− f ∈ (0, 2

7) p54–q200
(0,p,p,q,q,p) u/3 = (3− v)/3 = f ∈ (0, 1

3) p150–q104
(0,p,p,q,q,q) u/3 = (3− v)/3 = 1− f ∈ (0, 1

3) p22–q232
(0,p,q,q,q,p) u−1 = (3− v)/3 = f ∈ [0, 1

5) p146–q108
(0,p,q,q,q,q) u−1 = (3− v)/3 = 1− f ∈ [0, 1

5) p18–q236
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Phase transitions in 1d elementary PCA

Scaling hypothesis and finite-size scaling

Mean field solutions, irrespective of the order employed, cannot
capture the true nature of a phase transition =⇒ one needs exact
solutions, RG calculations or numerical simulations

Scaling hypothesis

Close to a second-order phase transition the order parameter xL(t) of
the PCA (its density of active cells) behaves like

xL(t)∼ t−β/ν‖ Φ(εt1/ν‖ , tν⊥/ν‖/L)

where ε = |p−p∗ |> 0 and L is the size of the array

For L↗ ∞, xL(t)∼ t−β/ν‖Φ(εt1/ν‖) with Φ(u� 1)∼ const and
Φ(u� 1)∼ uβ . Close to the critical point ε ≈ 0 and for large L we
must thus observe xL(t)∼ t−δ , with δ = β/ν‖
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Directed percolation conjecture

Directed percolation conjecture

All phase transitions into an absorbing state in short-ranged systems
in the absence of conserved quantities belong to the directed
percolation universality class of critical behaviour

According to the DP conjecture, the critical behavior of all 1d
single-component PCA belongs to the DP universality class

Indeed, all PCA mentioned here (and also some others) either does
not display a phase transition or belongs to the DP universality class
of critical behavior

Is it possible to find/devise mixed PCA in other universality classes?
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Ergodicity and density classification problem

Ergodicity and density classification problem

Gacs, Kurdyumov, and Levin (GKL, 1978) introduced two subjects of
far-reaching consequences in the CA literature

Ergodicity of 1d PCA
Are nonequilibrium interacting particle systems capable of displaying
phase transitions? Is the “positive probabilities conjecture” true?

Positive probabilities conjecture

1d systems with short-range interactions and positive transition
probabilities are always ergodic

Density classification problem
The task consists in classifying arrays of symbols according to their
initial density using local rules, and is completed successfully if all
the cells of the CA converge to the initial majority state in O(L) time
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The four-state GKL model IV

GKL model IV is a four-state CA with ω = {→,←,↑,↓} and rules

φIV(→, xi, xi+1) =→, if xi, xi+1 6=←

φIV(xi−1,→, xi+1) =

{
↓, if xi−1 ∈ {←,↑}
→, otherwise

φIV(xi−1, xi, xi+1) = ↑, if xi ∈ {↑,↓} and first does not apply

These rules define only 42 transitions. The missing 22 transitions are
determined by the supplemental reflection rule

φIV(xi−1,xi,xi+1) = φIV(x∗i+1,x
∗
i ,x
∗
i−1)

∗,

with
→∗ =←, ←∗ =→, ↑∗ = ↑, ↓∗ = ↓
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The four-state GKL model IV

GKL-IV density classification performance
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The four-state GKL model IV

GKL-IV model under noise

GKL considered random writing errors: at every time step, with
probability 1−α the transition follows the deterministic rules and
with probability α the final state is chosen uniformly at random

Is the noisy GKL-IV model ergodic?
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Stationary pdf of the majority state in the GKL-IV PCA

Density plot and level curves of the pdf of the majority state in the
stationary state of the GKL-IV PCA for an array of L = 400 cells
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Space-time diagrams of the noisy GKL-IV
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Ergodicity of the GKL-IV PCA

Based on an analogy between the flipping time τ(L,α) between the
majority phases of a PCA of L cells subject to noise level α and the
correlation length ξ‖(L,T) of a 2D equilibrium interacting classical
spin model of linear size L at temperature T we expect that

τ(L,α)∼ exp[u(L,α)].

Nonergodic dynamics: τ(L,α) diverges as L↗ ∞
Ergodic dynamics: u(L,α) remains bounded in L, signaling that
the PCA forgets about its initial condition in finite time

In a nonergodic phase u(L,α)∼ b(L)/α for α ↘ 0 and fixed L and
u(L,α)∼ c(α)L for fixed α and L↗ ∞
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Ergodicity of the GKL-IV PCA
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exponentially as the PCA dynamics
becomes less noisy, diverging as α ↘ 0
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While τ(L,α) clearly diverges as α ↘ 0,
it does not so as L grows at least down to
α = 0.025
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Noisy GKL models

The four-state GKL model IV

Summary on GKL-IV

GKL-IV performs well in the density classification problem,
with a performance comparable with that of GKL-II

On the negative side, GKL-IV takes longer (almost 3 times) to
reach consensus

We found signs of an ergodic-nonergodic phase transition at
some small finite positive level of noise α . 0.016

GKL-IV PCA may be nonergodic but our data are inconclusive
— conclusions are affected by the finite size of the system and
the finite time of the simulations

Note that while the ergodicity of 1d deterministic CA is in general
undecidable, most PCA are believed to be ergodic
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Some research directions

Population dynamics

Population dynamics in d > 2

Population dynamics occur in d > 2 and usually involve many species

Investigate 2d, two-parameter, n-species PCA (mixed?)
including the competing drives of logistic growth vs. Allee effect

Good starting point: 2d, single-species, one-parameter PCA =⇒
may already provide a model for invasion dynamics

Alternatively, investigate 1d, single-species, two-parameter PCA
=⇒ possible interesting phase diagram (α , λ )
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GKL-like models

Modified GKL models

We have found many GKL-like models capable of classifying density

A modified GKL-II model involving neighborhoods of type i,
i±1, i± (2k+1), k > 1 preserve the density classification
capacity approx. at the same level but achieves consensus faster

GKL(j,k) : xt+1
i =

{
maj(xt

i−k,x
t
i−j,x

t
i), if xt

i = 0
maj(xt

i,x
t
i+j,x

t
i+k), if xt

i = 1

We have found 4 and 5-state GKL-like eroders with “catalyst
states” that deserve further investigation
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Some research directions

GKL-like models

Modified GKL models

Density classification performance of GKL(j,k) for different (j,k) in
an array of L = 149 cells averaged over 107 random initial conditions
near the critical density ρ∗ = 1/2

(j,k) (1,3) (1,5) (1,7) (1,9) (1,11)
〈f 〉 81.5% 81.2% 81.5% 80.3% 76.0%
〈t∗〉/L 0.576 0.383 0.289 0.280 0.413
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Some research directions

GKL-like models

Modified GKL models

Space-time patterns of GKL(j,k) with L = 149, 0 6 t 6 100, and
initial conditions near the critical density ρ∗ = 1/2

In reading order (j,k) = (1,3) (usual GKL-II), (1,5), (1,7), and (1,9)
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