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Configurations

1-dimensional configuration: infinite tape divided in regular
cells, each one being in a given colour (finite number of
possible colours).

· · · · · ·

2-dimensional configuration:
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Cellular automaton

We start from a configuration.

All the cells update simultaneously their colour, and choose
their new colour in function of the colours they observe in a
finite neighbourhood.

If all cells apply simultaneously the same local rule, the update
dynamics is called a cellular automaton.
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Mathematical definition

Let A be a finite set of symbols, called the alphabet.

We denote by AZd
the set of configurations.

An element of AZd
is a sequence (xk)k∈Zd , with xk ∈ A for k ∈ Zd .

Definition

A map F : AZd → AZd
is a cellular automaton if there exists a

neighbourhood N = (n1, . . . , nℓ) and a local function
f : Aℓ → A such that:

∀k ∈ Zd , F (x)k = f (xk+n1 , . . . , xk+nℓ).

? ?? ?? ?? ?? ?? ?? x ?

f
· · ·

· · ·

· · ·

· · ·F (x) =

x =

A = {□,■}, N = (−2,−1, 0, 1, 2)
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Examples: majority cellular automata

One-dimensional majority CA of radius 1: each cell observes
its own colour, and the colour of its left and right neighbours,
and the new colour is the one that has a majority among the
three.

? ?? ?? ?? ?? ?? ?? ? ?

· · ·

· · ·

· · ·

· · ·F (x) =

x =

Two-dimensional majority CA on various neighbourhoods...

Von Neumann Moore Toom
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Parity cellular automaton (XOR)

A cell becomes blue if there is exactly one blue cell among its left
and right neighbours.
A = {0, 1} F (x)k = xk−1 + xk+1 mod 2
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Conway’s game of life

Birth Survival
A dead cell with exactly three live
neighbours becomes a live cell.

A live cell lives on to the next ge-
neration iff it has two or three live
neighbours. Otherwise, it dies.

A Gosper’s glider gun creating “gliders” Step 1 Images: Wikipedia
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Applications

Modelling of complex systems, made of a large number of
components, that evolve in time, and whose behaviour only
depends on what they observe in some bounded neighbourhood.

Examples:

Cellular tissues

Computer networks

Road traffic

Swarms of birds

Shell shapes

Irène Marcovici Cellular automata and percolation



Complexity

Cellular automata: simple definition but very complex
evolutions!

Wolfram’s classification (1981)

Image: N. Fatès
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Curtis-Hedlund-Lyndon theorem

Theorem [Curtis-Hedlund-Lyndon 1969]

F : AZ → AZ is a cellular automaton if and only if F is a
continous function that comutes with the shift map σ.

Shift map: σ : AZ → AZ defined by ∀k ∈ Z, σ(x)k = xk−1.

Distance on AZ: d(x , y) = 2−min {|k| ; xk ̸=yk}.

Example:
d(x , y) = 2−5.

-7 -6 -5 -4 -3 -2 -1 0 1 2 3 4 5 6 7

x

x

· · ·

· · ·

· · ·

· · ·x =

y =

Continuity of CA: d(x , y) < 2−n−r =⇒ d(F (x),F (y)) < 2−n.
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Probabilistic cellular automata

For probabilistic CA, the local function gives, for each element of
Aℓ, the probability of each symbol.

f : Aℓ → M(A)

F : M(AZd
) → M(AZd

)

? ?? ?? ?? ?? ?? ?? x ?
f

· · ·
· · ·

· · ·
· · ·F (x) =

x =

Example: parity CA with a probability ε of error.

ε = 0 ε = 0.01
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Probabilistic cellular automata

For a neighbourhood N = {−r , . . . , r},

Fµ[ym . . . yn] =
∑

xm−r ...xn+r∈An−m+2r+1

µ[xm−r . . . xn+r ]
n∏

k=m

f (xk−r , . . . , xk+r )(yk)

Illustration for r = 1 and n = m + 2:

xm−1 xm xm+1 xm+2 xm+3

ym ym+1 ym+2

· · ·

· · ·

· · ·

· · ·Fµ

µ
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Undirected site percolation

p = 0.4 p = 0.5 p = 0.6
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Directed site percolation

p = 0.5 p = 0.6 p = 0.7
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Directed site percolation

p = 0.5 p = 0.6 p = 0.7
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Percolation theory

θ(p) = probability for the origin to belong to an infinite cluster

θ is a non-decreasing function

There exists a threshlod
value pc such that:

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0
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Cellular automata and percolation

Iteration of some 2D cellular automata
from Bernoulli product configurations

Space-time diagrams of 1D
probabilistic cellular automata
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Bootstrap percolation

Definition

The bootstrap percolation CA is defined on {0, 1}Z2
as follows.

A cell in state 1 always remains in state 1.

A cell in state 0 having ≥ 2 neighbours in state 1 becomes in
state 1.

Let’s choose the initial configuration according to the Bernoulli
product measure of parameter p.

Experimentally, if p is not too small (say p > 0.10), the state 1
invades quickly the whole grid.
For p small, the picture is quite different...
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Bootstrap percolation

Simulation with p = 0.05.
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Bootstrap percolation

Simulation with p = 0.05.
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Bootstrap percolation

Theorem (van Enter 1987)

For any p > 0, the bootstrap CA on Z2 converges to the “all 1”
configuration.

Idea: prove that there is somewhere in the initial configuration an
“all 1” square from which the whole configuration will be invaded.

This will happen iff this square is not surrounded by an “all 0”
rectangle.
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Take a fixed square CN of N × N cells, and let ε ∈ (0, 1).

Pp(CN is surrounded by an empty rectangle) <
∞∑

k=4N

(1− p)k αk ,

where αk = “number of rectangles around CN of length k”

< Q(k).

The number of shapes for a rectangle of length 2ℓ equals ℓ− 1,
and the number of rectangles of length 2ℓ and fixed shape
surrounding the origin is ≤ (ℓ− 1)2.

For any fixed p and ε, if N is large enough:

Pp(CN is surrounded by an empty rectangle ) < ε

=⇒ Pp(CN is not surrounded by any empty rectangle) > 1− ε.

Pp(CN is all occupied and not surrounded by an empty rectangle)

> pN
2
(1− ε) > 0

By ergodicity of Pp, the occurence of such a square CN somewhere
has probability 1.
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Bootstrap percolation on finite grids

On a square grid of N × N cells, let:
α(N, p) = probability that the entire square is eventually occuppied

Let (Ln)n≥0, (pn)n≥0 be such that Ln −→
n→∞

∞ and pn −→
n→∞

0.

Theorem (Holroyd 2003)

(i) If lim inf
n→∞

pn log Ln >
π2

18
, then lim

n→∞
α(Ln, pn) = 1.

(ii) If lim sup
n→∞

pn log Ln <
π2

18
, then lim

n→∞
α(Ln, pn) = 0.

In other words, on a large N × N grid:
p > π2

18 logN =⇒ convergence to total occupancy with high prob.

p < π2

18 logN =⇒ no convergence to total occupancy.

But the convergence is very slow: experimentally, the threshold
value observed is not π2/18 ≈ 0.548... but rather 0.245± 0.015 (!).
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Density classification

evolution−−−−−−−→
t→∞

p=0.2

evolution−−−−−−−→
t→∞

p=0.8
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Density classification

evolution−−−−−−−→
t→∞

p=0.49

evolution−−−−−−−→
t→∞

p=0.51
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Majority CA

Proposition

The majority CA on Toom’s neighbourhood is an eroder.

Rectangle of size m × n: blue cells are erased in at most m + n
steps.
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Toom’s CA classifies the density

Theorem (Bušić-Fatès-Mairesse-M. 2013)

The majority CA on Toom’s neighbourhood classifies the density.
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Sketch of proof

Le us assume that p < 1/2 (example: p = 0.45).

Starting from a blue cell, we are allowed to go one step to the
North, East, South, West, or N-W, S-E.
Percolation theory tells us that if we want to stay only on blue
cells, we can only visit a finite number of blue cells!

t = 0

Irène Marcovici Cellular automata and percolation



Sketch of proof

Le us assume that p < 1/2 (example: p = 0.45).
Starting from a blue cell, we are allowed to go one step to the
North, East, South, West, or N-W, S-E.

Percolation theory tells us that if we want to stay only on blue
cells, we can only visit a finite number of blue cells!

t = 0

Irène Marcovici Cellular automata and percolation



Sketch of proof

Le us assume that p < 1/2 (example: p = 0.45).
Starting from a blue cell, we are allowed to go one step to the
North, East, South, West, or N-W, S-E.
Percolation theory tells us that if we want to stay only on blue
cells, we can only visit a finite number of blue cells!

t = 0

Irène Marcovici Cellular automata and percolation



Percolation theory

p = proportion of blue sites
θ(p) = probability for the origin to belong
to an infinite cluster

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0

pc = 1/2

Irène Marcovici Cellular automata and percolation



Percolation theory

p = proportion of blue sites
θ(p) = probability for the origin to belong
to an infinite cluster

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0

pc = 1/2

Irène Marcovici Cellular automata and percolation



Percolation theory

p = proportion of blue sites
θ(p) = probability for the origin to belong
to an infinite cluster

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0

pc = 1/2

Irène Marcovici Cellular automata and percolation



Percolation theory

p = proportion of blue sites
θ(p) = probability for the origin to belong
to an infinite cluster

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0

pc = 1/2

Irène Marcovici Cellular automata and percolation



Percolation theory

p = proportion of blue sites
θ(p) = probability for the origin to belong
to an infinite cluster

p < pc =⇒ θ(p) = 0

p > pc =⇒ θ(p) > 0

pc = 1/2

Irène Marcovici Cellular automata and percolation



Back to the proof...

Let us assume that p < 1/2 (example: p = 0.45).
Starting from a blue cell, we are allowed to go one step to the
North, East, South, West, or N-W, S-E.
Percolation theory tells us that if we want to stay only on blue
cells, we can only visit a finite number of blue cells!

t = 0
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Back to the proof...

Let us assume that p < 1/2 (example: p = 0.45).
Starting from a blue cell, we are allowed to go one step to the
North, East, South, West, or N-W, S-E.
Percolation theory tells us that if we want to stay only on blue
cells, we can only visit a finite number of blue cells!
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And in dimension 1?

In dim. 1, there also exist CA possessing the eroder property.
One example is GKL CA (Gács-Kurdyumov-Levin 1978).

If a cell (of index n) is white, its new colour is the majority
one between cells n − 3, n − 1, n.

If a cell (of index n) is blue, its new colour is the majority one
between cells n, n + 1, n + 3.

But we only know that GKL corrects configurations for which the
probability of errors satisfies p < 0.0017... (Taati 2015).

In dim. 1, it is an open problem whether there exists a CA
classifying the density!
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Ergodicity

A PCA is ergodic if it converges to one and the same equilibrium
distribution, starting from any initial configuration.

Definition

A PCA F is ergodic if:

there exists a unique invariant probability distribution
π ∈ M(AZd

), such that Fπ = π,

for any initial distribution µ ∈ M(AZd
), the sequence

(F nµ)n≥0 converges to π.

Which PCA are ergodic?
How to compute their equilibrium distribution?
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Positive rates conjecture

Positive rates conjecture: for d = 1, if all the transition rates
are > 0, then the PCA is ergodic.

Remark: false for d ≥ 2 and false for d = 1

Counter-example for d = 2:
noisy version of Toom’s majority CA

Counter-example for d = 1: very complicated! (Gács 2001)
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Perfect sampling for PCA

Let F be an ergodic PCA of invariant measure π.

Perfect sampling of π: probabilistic algorithm returning a sequence
a1 . . . an with exactly the probability it has to appear under the
measure π (that is to say, with probability
π({x ∈ AZ/x1 . . . xn = a1 . . . an})).
Aim: simulating the behaviour of the PCA after an infinity of
iterations with a (hopefully) finite-time algorithm!

Idea: adapt the coupling from the past algorithm (Propp-Wilson
1996)
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Update function of a PCA

A way to run a PCA (on A = {0, 1}) from configuration x ∈ AZ:

generate for each cell k independently and uniformly a
random number rk in [0, 1],

choose the new state of the cell k to be
0 if rk < f ((xk+v )v∈N )(0), and 1 otherwise.

r0f(x0x1)(0)0 1

0 1

. . . x−3 x−2 x−1 x0 x1 x2 x3 . . .
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Update function of a PCA

A way to run a PCA (on A = {0, 1}) from configuration x ∈ AZ:

generate for each cell k independently and uniformly a
random number rk in [0, 1],

choose the new state of the cell k to be
0 if rk < f ((xk+v )v∈N )(0), and 1 otherwise.

r0f(x0x1)(0)0 1

0 1

It defines an update function for F , given by:

ϕ : AZ × [0, 1]Z → AZ

ϕ(x , r)k =

{
0 if rk < f ((xi )i∈k+N )(0)
1 otherwise.
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Update function of a PCA

Example: A = {0, 1}, neighbourhood N = {0, 1}

rk

rk

rk

rk

f(00)(0)

f(01)(0)

f(10)(0)

f(11)(0)

0 1

0 1

0 1

0 1

0 1
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Envelope PCA

Introduction of an envelope PCA defined on the alphabet

B = {0 = {0}, 1 = {1}, ? = {0, 1}},

to handle configurations partially known.

0 f(00)(0)

f(10)(0)

1 rk

0 1

0 1

0 ? 1

env(f)(?0)(0) env(f)(?0)(1)env(f)(?0)(?)

The update function ϕ̃ of env(P) satisfies for x ∈ AZ and y ∈ BZ,

x ∈ y ⇒ ∀r ∈ [0, 1]Z, ϕ(x , r) ∈ ϕ̃(y , r).
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The envelope PCA

Definition of the envelope PCA

The PCA env(F ) of alphabet B = {0, 1, ?}, neighborhood N , and
local function env(f ) is defined for y ∈ BN by

env(f )(y)(0) = min
x∈AN , x∈y

f (x)(0)

env(f )(y)(1) = min
x∈AN , x∈y

f (x)(1)

env(f )(y)(?) = 1− min
x∈AN , x∈y

f (x)(0)− min
x∈AN ,x∈y

f (x)(1)

In particular,

env(f )(?N )(?) = 1− min
x∈AN

f (x)(0)− min
x∈AN

f (x)(1)

= max
x∈AN

f (x)(1)− min
x∈AN

f (x)(1) = p?
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Coupling from the past algorithm

Let F be a PCA on E = Z, A = {0, 1}, with N = {0, 1}.

a b

Proposition

If this algorithm stops a.s. then the PCA is ergodic, and the
algorithm samples perfectly its unique invariant distribution.
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Let F be a PCA on E = Z, A = {0, 1}, with N = {0, 1}.
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If this algorithm stops a.s. then the PCA is ergodic, and the
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Irène Marcovici Cellular automata and percolation



Coupling from the past algorithm

Let F be a PCA on E = Z, A = {0, 1}, with N = {0, 1}.

? ?
? ? ? (r1i )0≤i≤2

Proposition

If this algorithm stops a.s. then the PCA is ergodic, and the
algorithm samples perfectly its unique invariant distribution.

Irène Marcovici Cellular automata and percolation



Coupling from the past algorithm

Let F be a PCA on E = Z, A = {0, 1}, with N = {0, 1}.

? 1
? ? ? (r1i )0≤i≤2

Proposition

If this algorithm stops a.s. then the PCA is ergodic, and the
algorithm samples perfectly its unique invariant distribution.

Irène Marcovici Cellular automata and percolation



Coupling from the past algorithm
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Ergodicity criterion

Let F be a PCA on E = Z, A = {0, 1}, with N = {0, 1}.

?

↑ ↖ (r1i )0≤i≤2

? ·
↑ ↖ ↑↖ (r2i )0≤i≤3

· ? ·
↑↖ ↑ ↖↑↖ (r3i )0≤i≤4

· ? · ·

Recall that: p? = 1−minx∈AN f (x)(0)−minx∈AN f (x)(1).

For each cell, P(?) < p? (domination by indep. Bernoulli)

If p? < directed percolation threshold, then the PCA is ergodic.
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First ergodicity criterion

Proposition

Let pc(N ) be the critical value of the two-dimensional directed site
percolation of neighbourhood N .

If p? < pc(N ), then the PCA is ergodic, and we can sample
exactly its unique invariant measure using the CFTP algorithm.
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Limits of the first ergodicity criterion

The algorithm stops a.s. iff the EPCA is ergodic. But there exist
ergodic PCA for which the envelope PCA is not ergodic!

Example: parity CA with a probability ε of error.

f (x , y) = (1− ε) δx+y mod 2 + ε δx+y+1 mod 2

For this PCA, we have p? = 1− 2ε.

This PCA is ergodic for all ε ∈ (0, 1) (convergence to the
uniform measure).

There exits ε∗ ∈ (0, 1) such that the EPCA is ergodic if
ε > ε∗, and non-ergodic if ε < ε∗.
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Permutive CA

Definition

A CA F of neighbourhood {0, 1} is permutive if:
∀b ∈ A, ∃σb ∈ S(A), ∀a ∈ A, f (a, b) = σb(a).

σb(a)
|⧹
a b

Example: A = Z/nZ and f (a, b) = a+ b.

We consider the PCA Fε that consists in applying the local rule of
F with probability 1− ε, and choosing a symbol uniformly at
random with probability ε.

Proposition

For any ε ∈ (0, 1), the PCA Fε is ergodic.
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Permutive CA

For F , each b ∈ A induces a permutation σb ∈ S(An):

t = 1 y1 y2 . . . yn
t = 0 x1 x2 . . . xn b

For Fε, each b ∈ A induces a transition kernel Pb on An:
ỹ1 . . . ỹn ∼ Pb (x1 . . . xn, • ).

t = 3 · · · · · ·
t = 2 z̃1 z̃2 · · · z̃n

t = 1 ỹ1 ỹ2 · · · ỹn
t = 0 x1 x2 . . . xn b

Pb is aperiodic and irreducible, its invariant measure is the
uniform measure on An.
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t = 0 x1 x2 . . . xn b

Pb is aperiodic and irreducible, its invariant measure is the
uniform measure on An.

Irène Marcovici Cellular automata and percolation



Permutive CA

For F , each b ∈ A induces a permutation σb ∈ S(An):

t = 1 y1 y2 . . . yn
t = 0 x1 x2 . . . xn b

For Fε, each b ∈ A induces a transition kernel Pb on An:
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Permutive CA with noise

For each b ∈ A, there exists θb < 1 such that:

||Pbµ− Pbν||1 ≤ θb||µ− ν||1.

Let θ = max{θa ; a ∈ A}.

||Pbt . . .Pb2Pb1µ− Pbt . . .Pb2Pb1ν||1 ≤ θt ||µ− ν||1.

In particular, for ν = λn (uniform measure on An), we obtain that
for any distribution µ on An and any b1, . . . , bt ∈ A,

||Pbt . . .Pb2Pb1µ− λn||1 ≤ θt ||µ− λn||1 ≤ 2θt .
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Nilpotent CA

F is nilpotent if there exists N ≥ 1 such that FN is constant.
It means that there exists α ∈ A such that ∀x ∈ AZ,FN(x) = αZ.

Proposition [M.-Sablik-Taati 2019]

If ε is small enough, the noisy PCA Fε is ergodic.

Coupling from the past (Propp-Wilson technique).

t = 0

t = −N

t = −2N

t = −3N

A0

A1

A2

A3 = ∅
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Nilpotent CA

ε = 0 ε = 0.01

F 12(x) = 0Z for all x ∈ {0, 1, 2}Z
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CA with a spreading state

The symbol α ∈ A is a spreading state of F if:
(xk+i = α for some i ∈ {−r , . . . , r}) =⇒ F (x)k = α.

Proposition [M.-Sablik-Taati 2019]

For any ε > 0, the noisy PCA Fε is ergodic.

t = 0

t = −1

t = −2

t = −3
...

α

α

For ε small enough, also true for a general noise (with a different
proof)...
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CA with a spreading state

ε = 0 ε = 0.01

F (x)i = xi−1xixi+1 mod 3
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The hardcore PCA
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The hardcore PCA

or
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with probability 1− p

with probability p

(with probability 1)
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The hardcore PCA

or

or

with probability 1− p

with probability p

(with probability 1)

Here, p? = p. The first ergodicity criterion proves the ergodicity
only for p < 0.7 or so.

For which values of the parameter p is the PCA ergodic?

How can we describe its invariant measure(s)?
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Motivations

A model very easy to define!

Enumeration of directed animals in combinatorics

Percolation game

Golden mean subshift in symbolic dynamics

Hard-core model in statistical physics
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Definition of directed animals

Definition

A directed animal of base C is a finite subset of vertices of Z× N,
connected from C × {0} by links ↑ or ↗

A directed animal Not a directed animal
(whose base has only one element)
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Enumeration of directed animals

Counting series of directed animals of base C :

SC (x) =
∑

E :DA of base C

x |E | =
∑
n≥0

an(C )xn,

where an(C ) = number of directed animals of base C and size n.

Recurrence relation: SC (x) = x |C |
(∑

D⊂C+{0,1} SD(x)
)

Combinatoire des animaux dirigés

Définition des animaux dirgiés

Animal dirigé de base C : ensemble fini de sommets de Z × N,
connectés depuis C × {0} par des liens → ou �

Un animal dirigé Pas un animal dirigé

Irène Marcovici Jouer avec les automates cellulaires probabilistes
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Link with the PCA

Let µ be an invariant measure of the PCA of parameter p, and let
X ,Y ∼ µ.

For a finite subset C ⊂ Z, we have the following relation.

P(∀i ∈ C ,Yi = 1) = p|C | P(∀i ∈ C + {0, 1},Xi = 0)

= p|C |
( ∑

D⊂C+{0,1}

(−1)|D| P(∀i ∈ D,Xi = 1)
)

So, SC (−p) = (−1)|C |P(∀i ∈ C ,Yi = 1) is one possible solution
for the reccurence relation of directed animals of base C .

References: D. Dhar, M. Bousquet-Mélou, J.-F. Marckert, Y. Le
Borgne, M. Albenque...
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Definition of the percolation game

Grid N× N, with each site colored in blue independently with
probability p (here, p = 0.2).

One token, that two players move alternatively, from position x to
a white position among x + (0, 1) or x + (1, 0).
If both sites x + (0, 1) and x + (1, 0) are blue, then the player
whose turn it is to play loses the game.
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Winning positions, loss, and draws

A position is:

a win (W) if from this position, the player whose turn it is to
play has a winning strategy,

a loss (L) if from this position, the other player has a winning
strategy,

a draw (D) if neither player has a winning strategy, so that
with “best play”, the game will continue for ever.
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Proposition

For p large enough, there are no draws.

The connected component of white sites is almost surely finite.

Questions

Are there values of p for which there are D with a positive
probability?
What is the probability for the origin to be W, L, or D?
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The cellular automaton

If we know the status (W, L, or D) of the sites on a NW-SE
diagonal, then we know them on the next diagonal below.

We introduce a probabilistic cellular automaton on the alphabet
{W,L,D,■}, acting on diagonals along the direction ↙.

We can in fact identify the symbols ■ and W.

If there are no D, the PCA we obtain is defined as follows.

If there is at least one L along the two neighbours (North and East),
the site becomes a W.

Otherwise, it is a L with proba 1− p and a W with proba p.

The D play the role of symbols “?”.
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Recoding

With the recoding (L = 1,W = 0), if we rotate the picture, we
obtain the following PCA.

0 0 0

1

1

1

0

1

0 with probability p

1 with probability 1− p

0 (with probability 1)

ACP Ap

0 0 1

∗
∗
1

?

0

?

?

?

0

0 with probability p

1 with probability 1− p

0 (with probability 1)

? with probability 1− p

0 with probability p

ACP Fp
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Link with the ergodicity

Proposition

Fp ergodic ⇐⇒ Ap ergodic

⇐⇒ No draws

Envelope PCA (Fp) ergodic =⇒ PCA (Ap) ergodic.

Here, the converse statement is true because of the monotonicity
property of Fp: µ ⪯ ν ⇒ νFp ⪯ µFp, where ⪯ is the order induced
by 0 ⪯ ? ⪯ 1.
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Markovian invariant measure

One can show that for any value of p, the PCA has a Markovian
invariant measure µp, given by the following transition matrix.

P =

(
p0,0 p0,1
p1,0 p1,1

)
=

2−p−
√

p(4−3p)

2(1−p)2
2p2−3p+

√
p(4−3p)

2(1−p)2

−p+
√

p(4−3p)

2(1−p)

2−p−
√

p(4−3p)

2(1−p)



It is a reversible invariant measure.

Ap Ap

µp

µp

Theorem (Holroyd-M.-Martin 2018)

For any p ∈ (0, 1), the PCA Ap is ergodic.
Consequently, the probability of draws is 0 for the percolation
game on N2.
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Red: winning probability ; black: loss probability .
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Open questions

More generally, how to know whether a PCA is ergodic or not?

How can we describe the invariant measure(s) of a PCA?

In dimension 1, for elementary PCA (neighbourhood of size
2, binary states), is it true that if all the probability transitions
are in (0, 1), then the PCA is ergodic?
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